Solitons of the midpoint mapping and affine curvature

For a polygon x = ( x j ) j ∈ Z in R n we consider the midpoints polygon ( M ( x ) ) j = x j + x j + 1 / 2 . We call a polygon a soliton of the midpoints mapping M if its midpoints polygon is the image of the polygon under an invertible affine map. We show that a large class of these polygons lie on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geometry 2021-04, Vol.112 (1), Article 7
Hauptverfasser: Rademacher, Christine, Rademacher, Hans-Bert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a polygon x = ( x j ) j ∈ Z in R n we consider the midpoints polygon ( M ( x ) ) j = x j + x j + 1 / 2 . We call a polygon a soliton of the midpoints mapping M if its midpoints polygon is the image of the polygon under an invertible affine map. We show that a large class of these polygons lie on an orbit of a one-parameter subgroup of the affine group acting on R n . These smooth curves are also characterized as solutions of the differential equation c ˙ ( t ) = B c ( t ) + d for a matrix B and a vector d . For n = 2 these curves are curves of constant generalized-affine curvature k ga = k ga ( B ) depending on B parametrized by generalized-affine arc length unless they are parametrizations of a parabola, an ellipse, or a hyperbola.
ISSN:0047-2468
1420-8997
DOI:10.1007/s00022-020-00567-y