Solitons of the midpoint mapping and affine curvature
For a polygon x = ( x j ) j ∈ Z in R n we consider the midpoints polygon ( M ( x ) ) j = x j + x j + 1 / 2 . We call a polygon a soliton of the midpoints mapping M if its midpoints polygon is the image of the polygon under an invertible affine map. We show that a large class of these polygons lie on...
Gespeichert in:
Veröffentlicht in: | Journal of geometry 2021-04, Vol.112 (1), Article 7 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a polygon
x
=
(
x
j
)
j
∈
Z
in
R
n
we consider the midpoints polygon
(
M
(
x
)
)
j
=
x
j
+
x
j
+
1
/
2
.
We call a polygon a
soliton
of the midpoints mapping
M
if its midpoints polygon is the image of the polygon under an invertible affine map. We show that a large class of these polygons lie on an orbit of a one-parameter subgroup of the affine group acting on
R
n
.
These smooth curves are also characterized as solutions of the differential equation
c
˙
(
t
)
=
B
c
(
t
)
+
d
for a matrix
B
and a vector
d
. For
n
=
2
these curves are curves of constant generalized-affine curvature
k
ga
=
k
ga
(
B
)
depending on
B
parametrized by generalized-affine arc length unless they are parametrizations of a parabola, an ellipse, or a hyperbola. |
---|---|
ISSN: | 0047-2468 1420-8997 |
DOI: | 10.1007/s00022-020-00567-y |