Long time asymptotics of large data in the Kadomtsev-Petviashvili models

We consider the Kadomtsev-Petviashvili (KP) equations posed on \(\mathbb{R}^2\). For both equations, we provide sequential in time asymptotic descriptions of solutions, of arbitrarily large data, inside regions not containing lumps or line solitons, and under minimal regularity assumptions. The proo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-01
Hauptverfasser: Mendez, Argenis J, Muñoz, Claudio, Poblete, Felipe, Pozo, Juan C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mendez, Argenis J
Muñoz, Claudio
Poblete, Felipe
Pozo, Juan C
description We consider the Kadomtsev-Petviashvili (KP) equations posed on \(\mathbb{R}^2\). For both equations, we provide sequential in time asymptotic descriptions of solutions, of arbitrarily large data, inside regions not containing lumps or line solitons, and under minimal regularity assumptions. The proof involves the introduction of two new virial identities adapted to the KP dynamics, showing decay in large regions of space, especially in the KP-I case, where no monotonicity property was previously known. Our results do not require the use of the integrability of KP and are adaptable to well-posed perturbations of KP.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2480548642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480548642</sourcerecordid><originalsourceid>FETCH-proquest_journals_24805486423</originalsourceid><addsrcrecordid>eNqNysEKgkAQgOElCJLyHQY6C9u6mvcohDp06C5Ljrqy65ozCr19HXqATv_h-1ciUml6SAqt1EbERL2UUuVHlWVpJMpbGFpg6xEMvf3Ige2TIDTgzNQi1IYN2AG4Q7iaOngmXJI78mINdYt1Fnyo0dFOrBvjCONft2J_OT9OZTJO4TUjcdWHeRq-VCldyEwXuVbpf9cHS0w8Kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480548642</pqid></control><display><type>article</type><title>Long time asymptotics of large data in the Kadomtsev-Petviashvili models</title><source>Free E- Journals</source><creator>Mendez, Argenis J ; Muñoz, Claudio ; Poblete, Felipe ; Pozo, Juan C</creator><creatorcontrib>Mendez, Argenis J ; Muñoz, Claudio ; Poblete, Felipe ; Pozo, Juan C</creatorcontrib><description>We consider the Kadomtsev-Petviashvili (KP) equations posed on \(\mathbb{R}^2\). For both equations, we provide sequential in time asymptotic descriptions of solutions, of arbitrarily large data, inside regions not containing lumps or line solitons, and under minimal regularity assumptions. The proof involves the introduction of two new virial identities adapted to the KP dynamics, showing decay in large regions of space, especially in the KP-I case, where no monotonicity property was previously known. Our results do not require the use of the integrability of KP and are adaptable to well-posed perturbations of KP.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic properties ; Solitary waves</subject><ispartof>arXiv.org, 2021-01</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Mendez, Argenis J</creatorcontrib><creatorcontrib>Muñoz, Claudio</creatorcontrib><creatorcontrib>Poblete, Felipe</creatorcontrib><creatorcontrib>Pozo, Juan C</creatorcontrib><title>Long time asymptotics of large data in the Kadomtsev-Petviashvili models</title><title>arXiv.org</title><description>We consider the Kadomtsev-Petviashvili (KP) equations posed on \(\mathbb{R}^2\). For both equations, we provide sequential in time asymptotic descriptions of solutions, of arbitrarily large data, inside regions not containing lumps or line solitons, and under minimal regularity assumptions. The proof involves the introduction of two new virial identities adapted to the KP dynamics, showing decay in large regions of space, especially in the KP-I case, where no monotonicity property was previously known. Our results do not require the use of the integrability of KP and are adaptable to well-posed perturbations of KP.</description><subject>Asymptotic properties</subject><subject>Solitary waves</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNysEKgkAQgOElCJLyHQY6C9u6mvcohDp06C5Ljrqy65ozCr19HXqATv_h-1ciUml6SAqt1EbERL2UUuVHlWVpJMpbGFpg6xEMvf3Ige2TIDTgzNQi1IYN2AG4Q7iaOngmXJI78mINdYt1Fnyo0dFOrBvjCONft2J_OT9OZTJO4TUjcdWHeRq-VCldyEwXuVbpf9cHS0w8Kw</recordid><startdate>20210122</startdate><enddate>20210122</enddate><creator>Mendez, Argenis J</creator><creator>Muñoz, Claudio</creator><creator>Poblete, Felipe</creator><creator>Pozo, Juan C</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210122</creationdate><title>Long time asymptotics of large data in the Kadomtsev-Petviashvili models</title><author>Mendez, Argenis J ; Muñoz, Claudio ; Poblete, Felipe ; Pozo, Juan C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24805486423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic properties</topic><topic>Solitary waves</topic><toplevel>online_resources</toplevel><creatorcontrib>Mendez, Argenis J</creatorcontrib><creatorcontrib>Muñoz, Claudio</creatorcontrib><creatorcontrib>Poblete, Felipe</creatorcontrib><creatorcontrib>Pozo, Juan C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mendez, Argenis J</au><au>Muñoz, Claudio</au><au>Poblete, Felipe</au><au>Pozo, Juan C</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Long time asymptotics of large data in the Kadomtsev-Petviashvili models</atitle><jtitle>arXiv.org</jtitle><date>2021-01-22</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We consider the Kadomtsev-Petviashvili (KP) equations posed on \(\mathbb{R}^2\). For both equations, we provide sequential in time asymptotic descriptions of solutions, of arbitrarily large data, inside regions not containing lumps or line solitons, and under minimal regularity assumptions. The proof involves the introduction of two new virial identities adapted to the KP dynamics, showing decay in large regions of space, especially in the KP-I case, where no monotonicity property was previously known. Our results do not require the use of the integrability of KP and are adaptable to well-posed perturbations of KP.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2480548642
source Free E- Journals
subjects Asymptotic properties
Solitary waves
title Long time asymptotics of large data in the Kadomtsev-Petviashvili models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Long%20time%20asymptotics%20of%20large%20data%20in%20the%20Kadomtsev-Petviashvili%20models&rft.jtitle=arXiv.org&rft.au=Mendez,%20Argenis%20J&rft.date=2021-01-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2480548642%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480548642&rft_id=info:pmid/&rfr_iscdi=true