Long time asymptotics of large data in the Kadomtsev-Petviashvili models
We consider the Kadomtsev-Petviashvili (KP) equations posed on \(\mathbb{R}^2\). For both equations, we provide sequential in time asymptotic descriptions of solutions, of arbitrarily large data, inside regions not containing lumps or line solitons, and under minimal regularity assumptions. The proo...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-01 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Mendez, Argenis J Muñoz, Claudio Poblete, Felipe Pozo, Juan C |
description | We consider the Kadomtsev-Petviashvili (KP) equations posed on \(\mathbb{R}^2\). For both equations, we provide sequential in time asymptotic descriptions of solutions, of arbitrarily large data, inside regions not containing lumps or line solitons, and under minimal regularity assumptions. The proof involves the introduction of two new virial identities adapted to the KP dynamics, showing decay in large regions of space, especially in the KP-I case, where no monotonicity property was previously known. Our results do not require the use of the integrability of KP and are adaptable to well-posed perturbations of KP. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2480548642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480548642</sourcerecordid><originalsourceid>FETCH-proquest_journals_24805486423</originalsourceid><addsrcrecordid>eNqNysEKgkAQgOElCJLyHQY6C9u6mvcohDp06C5Ljrqy65ozCr19HXqATv_h-1ciUml6SAqt1EbERL2UUuVHlWVpJMpbGFpg6xEMvf3Ige2TIDTgzNQi1IYN2AG4Q7iaOngmXJI78mINdYt1Fnyo0dFOrBvjCONft2J_OT9OZTJO4TUjcdWHeRq-VCldyEwXuVbpf9cHS0w8Kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480548642</pqid></control><display><type>article</type><title>Long time asymptotics of large data in the Kadomtsev-Petviashvili models</title><source>Free E- Journals</source><creator>Mendez, Argenis J ; Muñoz, Claudio ; Poblete, Felipe ; Pozo, Juan C</creator><creatorcontrib>Mendez, Argenis J ; Muñoz, Claudio ; Poblete, Felipe ; Pozo, Juan C</creatorcontrib><description>We consider the Kadomtsev-Petviashvili (KP) equations posed on \(\mathbb{R}^2\). For both equations, we provide sequential in time asymptotic descriptions of solutions, of arbitrarily large data, inside regions not containing lumps or line solitons, and under minimal regularity assumptions. The proof involves the introduction of two new virial identities adapted to the KP dynamics, showing decay in large regions of space, especially in the KP-I case, where no monotonicity property was previously known. Our results do not require the use of the integrability of KP and are adaptable to well-posed perturbations of KP.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic properties ; Solitary waves</subject><ispartof>arXiv.org, 2021-01</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Mendez, Argenis J</creatorcontrib><creatorcontrib>Muñoz, Claudio</creatorcontrib><creatorcontrib>Poblete, Felipe</creatorcontrib><creatorcontrib>Pozo, Juan C</creatorcontrib><title>Long time asymptotics of large data in the Kadomtsev-Petviashvili models</title><title>arXiv.org</title><description>We consider the Kadomtsev-Petviashvili (KP) equations posed on \(\mathbb{R}^2\). For both equations, we provide sequential in time asymptotic descriptions of solutions, of arbitrarily large data, inside regions not containing lumps or line solitons, and under minimal regularity assumptions. The proof involves the introduction of two new virial identities adapted to the KP dynamics, showing decay in large regions of space, especially in the KP-I case, where no monotonicity property was previously known. Our results do not require the use of the integrability of KP and are adaptable to well-posed perturbations of KP.</description><subject>Asymptotic properties</subject><subject>Solitary waves</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNysEKgkAQgOElCJLyHQY6C9u6mvcohDp06C5Ljrqy65ozCr19HXqATv_h-1ciUml6SAqt1EbERL2UUuVHlWVpJMpbGFpg6xEMvf3Ige2TIDTgzNQi1IYN2AG4Q7iaOngmXJI78mINdYt1Fnyo0dFOrBvjCONft2J_OT9OZTJO4TUjcdWHeRq-VCldyEwXuVbpf9cHS0w8Kw</recordid><startdate>20210122</startdate><enddate>20210122</enddate><creator>Mendez, Argenis J</creator><creator>Muñoz, Claudio</creator><creator>Poblete, Felipe</creator><creator>Pozo, Juan C</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210122</creationdate><title>Long time asymptotics of large data in the Kadomtsev-Petviashvili models</title><author>Mendez, Argenis J ; Muñoz, Claudio ; Poblete, Felipe ; Pozo, Juan C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24805486423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic properties</topic><topic>Solitary waves</topic><toplevel>online_resources</toplevel><creatorcontrib>Mendez, Argenis J</creatorcontrib><creatorcontrib>Muñoz, Claudio</creatorcontrib><creatorcontrib>Poblete, Felipe</creatorcontrib><creatorcontrib>Pozo, Juan C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mendez, Argenis J</au><au>Muñoz, Claudio</au><au>Poblete, Felipe</au><au>Pozo, Juan C</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Long time asymptotics of large data in the Kadomtsev-Petviashvili models</atitle><jtitle>arXiv.org</jtitle><date>2021-01-22</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We consider the Kadomtsev-Petviashvili (KP) equations posed on \(\mathbb{R}^2\). For both equations, we provide sequential in time asymptotic descriptions of solutions, of arbitrarily large data, inside regions not containing lumps or line solitons, and under minimal regularity assumptions. The proof involves the introduction of two new virial identities adapted to the KP dynamics, showing decay in large regions of space, especially in the KP-I case, where no monotonicity property was previously known. Our results do not require the use of the integrability of KP and are adaptable to well-posed perturbations of KP.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2480548642 |
source | Free E- Journals |
subjects | Asymptotic properties Solitary waves |
title | Long time asymptotics of large data in the Kadomtsev-Petviashvili models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Long%20time%20asymptotics%20of%20large%20data%20in%20the%20Kadomtsev-Petviashvili%20models&rft.jtitle=arXiv.org&rft.au=Mendez,%20Argenis%20J&rft.date=2021-01-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2480548642%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480548642&rft_id=info:pmid/&rfr_iscdi=true |