Long time asymptotics of large data in the Kadomtsev-Petviashvili models

We consider the Kadomtsev-Petviashvili (KP) equations posed on \(\mathbb{R}^2\). For both equations, we provide sequential in time asymptotic descriptions of solutions, of arbitrarily large data, inside regions not containing lumps or line solitons, and under minimal regularity assumptions. The proo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-01
Hauptverfasser: Mendez, Argenis J, Muñoz, Claudio, Poblete, Felipe, Pozo, Juan C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the Kadomtsev-Petviashvili (KP) equations posed on \(\mathbb{R}^2\). For both equations, we provide sequential in time asymptotic descriptions of solutions, of arbitrarily large data, inside regions not containing lumps or line solitons, and under minimal regularity assumptions. The proof involves the introduction of two new virial identities adapted to the KP dynamics, showing decay in large regions of space, especially in the KP-I case, where no monotonicity property was previously known. Our results do not require the use of the integrability of KP and are adaptable to well-posed perturbations of KP.
ISSN:2331-8422