Nucleic Acid Aptamers for Molecular Diagnostics and Therapeutics: Advances and Perspectives
The advent of SELEX (systematic evolution of ligands by exponential enrichment) technology has shown the ability to evolve artificial ligands with affinity and specificity able to meet growing clinical demand for probes that can, for example, distinguish between the target leukemia cells and other c...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2021-02, Vol.60 (5), p.2221-2231 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The advent of SELEX (systematic evolution of ligands by exponential enrichment) technology has shown the ability to evolve artificial ligands with affinity and specificity able to meet growing clinical demand for probes that can, for example, distinguish between the target leukemia cells and other cancer cells within the matrix of heterogeneity, which characterizes cancer cells. Though antibodies are the conventional and ideal choice as a molecular recognition tool for many applications, aptamers complement the use of antibodies due to many unique advantages, such as small size, low cost, and facile chemical modification. This Minireview will focus on the novel applications of aptamers and SELEX, as well as opportunities to develop molecular tools able to meet future clinical needs in biomedicine.
Advantages of aptamers and SELEX in diverse research fields are summarized in this Minireview, along with some limitations and possible solutions to them. Furthermore described are future perspectives for aptamer modification with a near‐infinite number of molecular‐modulating elements that will result in more powerful tools in bioscience. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202003563 |