Boundary estimates for superharmonic functions and solutions of semilinear elliptic equations with source
In a certain Lipschitz domain Ω ⊂ R n , we establish the boundary Harnack principle for positive superharmonic functions satisfying the nonlinear differential inequality - Δ u ≤ c u p , where c > 0 and 1 < p < ( n + α ) / ( n + α - 2 ) with constant α regarding the lower bound estimate of t...
Gespeichert in:
Veröffentlicht in: | Collectanea mathematica (Barcelona) 2021, Vol.72 (1), p.43-61 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a certain Lipschitz domain
Ω
⊂
R
n
, we establish the boundary Harnack principle for positive superharmonic functions satisfying the nonlinear differential inequality
-
Δ
u
≤
c
u
p
, where
c
>
0
and
1
<
p
<
(
n
+
α
)
/
(
n
+
α
-
2
)
with constant
α
regarding the lower bound estimate of the Green function on
Ω
. An argument combined estimates for certain Green potentials and iteration methods enables us to prove it. Results are applicable to positive solutions of semilinear elliptic equations like
-
Δ
u
=
a
(
x
)
u
p
with
a
(
x
) being nonnegative and bounded on
Ω
. Also, we present an a priori estimate and a removability theorem for positive solutions having isolated singularities at a boundary point. The former extends one given by Bidaut-Véron and Vivier (Rev Mat Iberoam 16:477–513, 2000) in the case where
Ω
has a smooth boundary and
a
(
x
)
≡
1
. |
---|---|
ISSN: | 0010-0757 2038-4815 |
DOI: | 10.1007/s13348-020-00279-1 |