Spectral theory of a class of nilmanifolds attached to Clifford modules

We determine the spectrum of the sub-Laplacian on pseudo H -type nilmanifolds and present pairs of isospectral but non-homeomorphic nilmanifolds with respect to the sub-Laplacian. We observe that these pairs are also isospectral with respect to the Laplacian. More generally, our method allows us to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2021-02, Vol.297 (1-2), p.557-583
Hauptverfasser: Bauer, Wolfram, Furutani, Kenro, Iwasaki, Chisato, Laaroussi, Abdellah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We determine the spectrum of the sub-Laplacian on pseudo H -type nilmanifolds and present pairs of isospectral but non-homeomorphic nilmanifolds with respect to the sub-Laplacian. We observe that these pairs are also isospectral with respect to the Laplacian. More generally, our method allows us to construct an arbitrary number of isospectral but mutually non-homeomorphic nilmanifolds. Finally, we present two nilmanifolds of different dimensions such that the short time heat trace expansions of the corresponding sub-Laplace operators coincide up to a term which vanishes to infinite order as time tends to zero.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-020-02525-5