Spectral theory of a class of nilmanifolds attached to Clifford modules
We determine the spectrum of the sub-Laplacian on pseudo H -type nilmanifolds and present pairs of isospectral but non-homeomorphic nilmanifolds with respect to the sub-Laplacian. We observe that these pairs are also isospectral with respect to the Laplacian. More generally, our method allows us to...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2021-02, Vol.297 (1-2), p.557-583 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We determine the spectrum of the sub-Laplacian on pseudo
H
-type nilmanifolds and present pairs of isospectral but non-homeomorphic nilmanifolds with respect to the sub-Laplacian. We observe that these pairs are also isospectral with respect to the Laplacian. More generally, our method allows us to construct an arbitrary number of isospectral but mutually non-homeomorphic nilmanifolds. Finally, we present two nilmanifolds of different dimensions such that the short time heat trace expansions of the corresponding sub-Laplace operators coincide up to a term which vanishes to infinite order as time tends to zero. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-020-02525-5 |