Robust Classification of Largely Corrupted Electronic Nose Data Using Deep Neural Networks
Data loss for electronic noses may occur because of the sensor's installation environment or from electrical disturbances. As a result, electronic noses may experience difficulties when identifying gases. This paper proposes two deep neural network-based functions for identifying gases. First,...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2021-02, Vol.21 (4), p.5052-5059 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Data loss for electronic noses may occur because of the sensor's installation environment or from electrical disturbances. As a result, electronic noses may experience difficulties when identifying gases. This paper proposes two deep neural network-based functions for identifying gases. First, a denoising auto-encoder based on the corruption reconstruction method is proposed for electronic nose data to solve this problem. Second, a convolutional neural network-based gas-classifying model is proposed. Although the electronic nose data are highly discriminative, they are sensitive to the corruption of information; hence, they require an efficient restoration method for practical use. From the experiments we demonstrate that the proposed denoising auto-encoder provides a strong restoration capability, and the convolutional neural network-based classifier successfully discriminates the gas data samples with a classification rate over 95% even when the data loss is 50%. |
---|---|
ISSN: | 1530-437X 1558-1748 |
DOI: | 10.1109/JSEN.2020.3034145 |