Robust Classification of Largely Corrupted Electronic Nose Data Using Deep Neural Networks

Data loss for electronic noses may occur because of the sensor's installation environment or from electrical disturbances. As a result, electronic noses may experience difficulties when identifying gases. This paper proposes two deep neural network-based functions for identifying gases. First,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2021-02, Vol.21 (4), p.5052-5059
Hauptverfasser: Yoo, YoungJoon, Kim, Hyun-Il, Choi, Sang-Il
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Data loss for electronic noses may occur because of the sensor's installation environment or from electrical disturbances. As a result, electronic noses may experience difficulties when identifying gases. This paper proposes two deep neural network-based functions for identifying gases. First, a denoising auto-encoder based on the corruption reconstruction method is proposed for electronic nose data to solve this problem. Second, a convolutional neural network-based gas-classifying model is proposed. Although the electronic nose data are highly discriminative, they are sensitive to the corruption of information; hence, they require an efficient restoration method for practical use. From the experiments we demonstrate that the proposed denoising auto-encoder provides a strong restoration capability, and the convolutional neural network-based classifier successfully discriminates the gas data samples with a classification rate over 95% even when the data loss is 50%.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2020.3034145