Fault Diagnosis of Rolling Bearings Based on an Improved Stack Autoencoder and Support Vector Machine
In recent years, autoencoder has been widely used for the fault diagnosis of mechanical equipment because of its excellent performance in feature extraction and dimension reduction; however, the original autoencoder only has limited feature extraction ability due to the lack of label information. To...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2021-02, Vol.21 (4), p.4927-4937 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years, autoencoder has been widely used for the fault diagnosis of mechanical equipment because of its excellent performance in feature extraction and dimension reduction; however, the original autoencoder only has limited feature extraction ability due to the lack of label information. To solve this issue, this study proposes a feature distance stack autoencoder (FD-SAE) for rolling bearing fault diagnosis. Compared with the existing methods, FD-SAE has stronger feature extraction ability and faster network convergence speed. By analyzing the characteristics of original rolling bearing data, it is found that there are evident differences between normal data and faulty data. Therefore, a simple linear support vector machine (SVM) is used to classify normal data and faulty data, and then the proposed FD-SAE is used for fault classification. The novel combination of SVM and FD-SAE has simple structure and little computational complexity. Finally, the proposed method is verified on the rolling bearing data set of Case Western Reserve University (CWRU). |
---|---|
ISSN: | 1530-437X 1558-1748 |
DOI: | 10.1109/JSEN.2020.3030910 |