Existence of Ground State Solutions for Fractional Schrödinger–Poisson Systems with Doubly Critical Growth

This paper considers a class of fractional Schrödinger–Poisson type systems with doubly critical growth ( - Δ ) s u + V ( x ) u - ϕ | u | 2 s ∗ - 3 u = K ( x ) | u | 2 s ∗ - 2 u , in R 3 , ( - Δ ) s ϕ = | u | 2 s ∗ - 1 , in R 3 , where s ∈ ( 3 / 4 , 1 ) , 2 s ∗ = 6 3 - 2 s , V ∈ L 3 2 s ( R 3 ) , K...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics 2021-04, Vol.18 (2), Article 41
Hauptverfasser: Feng, Xiaojing, Yang, Xia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Mediterranean journal of mathematics
container_volume 18
creator Feng, Xiaojing
Yang, Xia
description This paper considers a class of fractional Schrödinger–Poisson type systems with doubly critical growth ( - Δ ) s u + V ( x ) u - ϕ | u | 2 s ∗ - 3 u = K ( x ) | u | 2 s ∗ - 2 u , in R 3 , ( - Δ ) s ϕ = | u | 2 s ∗ - 1 , in R 3 , where s ∈ ( 3 / 4 , 1 ) , 2 s ∗ = 6 3 - 2 s , V ∈ L 3 2 s ( R 3 ) , K ∈ L ∞ ( R 3 ) . By applying the concentration-compactness principle and variational method, the existence of ground state solutions to the systems is derived.
doi_str_mv 10.1007/s00009-020-01660-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2479806545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479806545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b4628ca8b4c17c117542ab8cea7294ed9e675051816d874a4404c052e7aa80a3</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqVwAVaWWAfGjhMnS1RKQaoEUru3HMehqdK42I7a7rgDd-EC3IST4DYIdsxm_kj_f40eQpcErgkAv3EQJo-AQgQkTSHaHqHBQSQsYce_mqWn6My5JQDNSUwHaDXe1s7rVmlsKjyxpmtLPPPSazwzTedr0zpcGYvvrVT7SzZ4phb286Os2xdtv97en03tnGnxbBeKVg5var_Ad6Yrmh0e2drXKmRC88YvztFJJRunL372EM3vx_PRQzR9mjyObqeRiknuo4KlNFMyK5giXBHCE0ZlkSktOc2ZLnOd8gQSkpG0zDiTjAFTkFDNpcxAxkN01deurXnttPNiaTobXneCMp5nkAYqwUV7l7LGOasrsbb1StqdICD2VEVPVQSq4kBVbEMo7kMumPcA_qr_SX0D2E19jg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479806545</pqid></control><display><type>article</type><title>Existence of Ground State Solutions for Fractional Schrödinger–Poisson Systems with Doubly Critical Growth</title><source>SpringerLink Journals - AutoHoldings</source><creator>Feng, Xiaojing ; Yang, Xia</creator><creatorcontrib>Feng, Xiaojing ; Yang, Xia</creatorcontrib><description>This paper considers a class of fractional Schrödinger–Poisson type systems with doubly critical growth ( - Δ ) s u + V ( x ) u - ϕ | u | 2 s ∗ - 3 u = K ( x ) | u | 2 s ∗ - 2 u , in R 3 , ( - Δ ) s ϕ = | u | 2 s ∗ - 1 , in R 3 , where s ∈ ( 3 / 4 , 1 ) , 2 s ∗ = 6 3 - 2 s , V ∈ L 3 2 s ( R 3 ) , K ∈ L ∞ ( R 3 ) . By applying the concentration-compactness principle and variational method, the existence of ground state solutions to the systems is derived.</description><identifier>ISSN: 1660-5446</identifier><identifier>EISSN: 1660-5454</identifier><identifier>DOI: 10.1007/s00009-020-01660-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Ground state ; Mathematics ; Mathematics and Statistics</subject><ispartof>Mediterranean journal of mathematics, 2021-04, Vol.18 (2), Article 41</ispartof><rights>Springer Nature Switzerland AG 2021</rights><rights>Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b4628ca8b4c17c117542ab8cea7294ed9e675051816d874a4404c052e7aa80a3</citedby><cites>FETCH-LOGICAL-c319t-b4628ca8b4c17c117542ab8cea7294ed9e675051816d874a4404c052e7aa80a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00009-020-01660-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00009-020-01660-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Feng, Xiaojing</creatorcontrib><creatorcontrib>Yang, Xia</creatorcontrib><title>Existence of Ground State Solutions for Fractional Schrödinger–Poisson Systems with Doubly Critical Growth</title><title>Mediterranean journal of mathematics</title><addtitle>Mediterr. J. Math</addtitle><description>This paper considers a class of fractional Schrödinger–Poisson type systems with doubly critical growth ( - Δ ) s u + V ( x ) u - ϕ | u | 2 s ∗ - 3 u = K ( x ) | u | 2 s ∗ - 2 u , in R 3 , ( - Δ ) s ϕ = | u | 2 s ∗ - 1 , in R 3 , where s ∈ ( 3 / 4 , 1 ) , 2 s ∗ = 6 3 - 2 s , V ∈ L 3 2 s ( R 3 ) , K ∈ L ∞ ( R 3 ) . By applying the concentration-compactness principle and variational method, the existence of ground state solutions to the systems is derived.</description><subject>Ground state</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1660-5446</issn><issn>1660-5454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRS0EEqVwAVaWWAfGjhMnS1RKQaoEUru3HMehqdK42I7a7rgDd-EC3IST4DYIdsxm_kj_f40eQpcErgkAv3EQJo-AQgQkTSHaHqHBQSQsYce_mqWn6My5JQDNSUwHaDXe1s7rVmlsKjyxpmtLPPPSazwzTedr0zpcGYvvrVT7SzZ4phb286Os2xdtv97en03tnGnxbBeKVg5var_Ad6Yrmh0e2drXKmRC88YvztFJJRunL372EM3vx_PRQzR9mjyObqeRiknuo4KlNFMyK5giXBHCE0ZlkSktOc2ZLnOd8gQSkpG0zDiTjAFTkFDNpcxAxkN01deurXnttPNiaTobXneCMp5nkAYqwUV7l7LGOasrsbb1StqdICD2VEVPVQSq4kBVbEMo7kMumPcA_qr_SX0D2E19jg</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Feng, Xiaojing</creator><creator>Yang, Xia</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210401</creationdate><title>Existence of Ground State Solutions for Fractional Schrödinger–Poisson Systems with Doubly Critical Growth</title><author>Feng, Xiaojing ; Yang, Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b4628ca8b4c17c117542ab8cea7294ed9e675051816d874a4404c052e7aa80a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ground state</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Xiaojing</creatorcontrib><creatorcontrib>Yang, Xia</creatorcontrib><collection>CrossRef</collection><jtitle>Mediterranean journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Xiaojing</au><au>Yang, Xia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of Ground State Solutions for Fractional Schrödinger–Poisson Systems with Doubly Critical Growth</atitle><jtitle>Mediterranean journal of mathematics</jtitle><stitle>Mediterr. J. Math</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>18</volume><issue>2</issue><artnum>41</artnum><issn>1660-5446</issn><eissn>1660-5454</eissn><abstract>This paper considers a class of fractional Schrödinger–Poisson type systems with doubly critical growth ( - Δ ) s u + V ( x ) u - ϕ | u | 2 s ∗ - 3 u = K ( x ) | u | 2 s ∗ - 2 u , in R 3 , ( - Δ ) s ϕ = | u | 2 s ∗ - 1 , in R 3 , where s ∈ ( 3 / 4 , 1 ) , 2 s ∗ = 6 3 - 2 s , V ∈ L 3 2 s ( R 3 ) , K ∈ L ∞ ( R 3 ) . By applying the concentration-compactness principle and variational method, the existence of ground state solutions to the systems is derived.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00009-020-01660-x</doi></addata></record>
fulltext fulltext
identifier ISSN: 1660-5446
ispartof Mediterranean journal of mathematics, 2021-04, Vol.18 (2), Article 41
issn 1660-5446
1660-5454
language eng
recordid cdi_proquest_journals_2479806545
source SpringerLink Journals - AutoHoldings
subjects Ground state
Mathematics
Mathematics and Statistics
title Existence of Ground State Solutions for Fractional Schrödinger–Poisson Systems with Doubly Critical Growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A13%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20Ground%20State%20Solutions%20for%20Fractional%20Schr%C3%B6dinger%E2%80%93Poisson%20Systems%20with%20Doubly%20Critical%20Growth&rft.jtitle=Mediterranean%20journal%20of%20mathematics&rft.au=Feng,%20Xiaojing&rft.date=2021-04-01&rft.volume=18&rft.issue=2&rft.artnum=41&rft.issn=1660-5446&rft.eissn=1660-5454&rft_id=info:doi/10.1007/s00009-020-01660-x&rft_dat=%3Cproquest_cross%3E2479806545%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479806545&rft_id=info:pmid/&rfr_iscdi=true