Existence of Ground State Solutions for Fractional Schrödinger–Poisson Systems with Doubly Critical Growth
This paper considers a class of fractional Schrödinger–Poisson type systems with doubly critical growth ( - Δ ) s u + V ( x ) u - ϕ | u | 2 s ∗ - 3 u = K ( x ) | u | 2 s ∗ - 2 u , in R 3 , ( - Δ ) s ϕ = | u | 2 s ∗ - 1 , in R 3 , where s ∈ ( 3 / 4 , 1 ) , 2 s ∗ = 6 3 - 2 s , V ∈ L 3 2 s ( R 3 ) , K...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2021-04, Vol.18 (2), Article 41 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper considers a class of fractional Schrödinger–Poisson type systems with doubly critical growth
(
-
Δ
)
s
u
+
V
(
x
)
u
-
ϕ
|
u
|
2
s
∗
-
3
u
=
K
(
x
)
|
u
|
2
s
∗
-
2
u
,
in
R
3
,
(
-
Δ
)
s
ϕ
=
|
u
|
2
s
∗
-
1
,
in
R
3
,
where
s
∈
(
3
/
4
,
1
)
,
2
s
∗
=
6
3
-
2
s
,
V
∈
L
3
2
s
(
R
3
)
,
K
∈
L
∞
(
R
3
)
. By applying the concentration-compactness principle and variational method, the existence of ground state solutions to the systems is derived. |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-020-01660-x |