Killing Forms on 2-Step Nilmanifolds
We study left-invariant Killing k -forms on simply connected 2-step nilpotent Lie groups endowed with a left-invariant Riemannian metric. For k = 2 , 3 , we show that every left-invariant Killing k -form is a sum of Killing forms on the factors of the de Rham decomposition. Moreover, on each irreduc...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2021, Vol.31 (1), p.863-887 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study left-invariant Killing
k
-forms on simply connected 2-step nilpotent Lie groups endowed with a left-invariant Riemannian metric. For
k
=
2
,
3
, we show that every left-invariant Killing
k
-form is a sum of Killing forms on the factors of the de Rham decomposition. Moreover, on each irreducible factor, non-zero Killing 2-forms define (after some modification) a bi-invariant orthogonal complex structure and non-zero Killing 3-forms arise only if the Riemannian Lie group is naturally reductive when viewed as a homogeneous space under the action of its isometry group. In both cases,
k
=
2
or
k
=
3
, we show that the space of left-invariant Killing
k
-forms of an irreducible Riemannian 2-step nilpotent Lie group is at most one-dimensional. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-019-00304-1 |