Killing Forms on 2-Step Nilmanifolds

We study left-invariant Killing k -forms on simply connected 2-step nilpotent Lie groups endowed with a left-invariant Riemannian metric. For k = 2 , 3 , we show that every left-invariant Killing k -form is a sum of Killing forms on the factors of the de Rham decomposition. Moreover, on each irreduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2021, Vol.31 (1), p.863-887
Hauptverfasser: del Barco, Viviana, Moroianu, Andrei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study left-invariant Killing k -forms on simply connected 2-step nilpotent Lie groups endowed with a left-invariant Riemannian metric. For k = 2 , 3 , we show that every left-invariant Killing k -form is a sum of Killing forms on the factors of the de Rham decomposition. Moreover, on each irreducible factor, non-zero Killing 2-forms define (after some modification) a bi-invariant orthogonal complex structure and non-zero Killing 3-forms arise only if the Riemannian Lie group is naturally reductive when viewed as a homogeneous space under the action of its isometry group. In both cases, k = 2 or k = 3 , we show that the space of left-invariant Killing k -forms of an irreducible Riemannian 2-step nilpotent Lie group is at most one-dimensional.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-019-00304-1