Convective flow of a Maxwell hybrid nanofluid due to pressure gradient in a channel
In this work, analytical solution of hybrid Maxwell nanofluid of the vertical channel due to pressure gradient is discussed. By introducing dimensionless variables the governing equations with all levied initial and boundary conditions is converted into dimensionless form. Fractional model for Maxwe...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2021, Vol.143 (2), p.1319-1329 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, analytical solution of hybrid Maxwell nanofluid of the vertical channel due to pressure gradient is discussed. By introducing dimensionless variables the governing equations with all levied initial and boundary conditions is converted into dimensionless form. Fractional model for Maxwell fluid is developed by Caputo time fractional differential operator by using the constitutive relation. The dimensionless expression for temperature and velocity are found using Laplace transform. Draw graphs of temperature and velocity by Mathcad software and discuss the behavior of flow parameters and the effect of fractional parameters. As a result, we have found by increasing the volumetric fraction of copper and alumina temperature increases and velocity decreases. Also, fluid flow properties showed dual behavior for small and large time, respectively, by increasing fractional parameters values. |
---|---|
ISSN: | 1388-6150 1588-2926 |
DOI: | 10.1007/s10973-020-10304-x |