Stability of Einstein Metrics on Fiber Bundles

We study the linear stability of Einstein metrics of Riemannian submersion type. First, we derive a general instability condition for such Einstein metrics and provide some applications. Then we study instability arising from Riemannian product structures on the base. As an application, we estimate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2021, Vol.31 (1), p.490-515
Hauptverfasser: Wang, Changliang, Wang, Y. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the linear stability of Einstein metrics of Riemannian submersion type. First, we derive a general instability condition for such Einstein metrics and provide some applications. Then we study instability arising from Riemannian product structures on the base. As an application, we estimate the coindex of the Einstein metrics constructed in Wang and Ziller (J Differ Geom 31:215–248, 1990) and Wang (Math Z 210:305–326, 1992). Finally, we investigate more closely the linear stability of Einstein metrics from circle bundle constructions and obtain a rigidity result for linearly stable Einstein metrics of this type.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-019-00282-4