Magnetorheological elastomer dynamic characterization method considering temperature, frequency, and magnetic field

Magnetorheological elastomers (MRE) are composite materials, comprised of a viscoelastic matrix with ferromagnetic particles added to it, which enables variation in the dynamic properties through applied magnetic fields. The present work aims to experimentally identify the effects of frequency, temp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Brazilian Society of Mechanical Sciences and Engineering 2021-02, Vol.43 (2), Article 70
Hauptverfasser: da Silva, Thiago, Venter, Giuliana Sardi, Bavastri, Carlos Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of the Brazilian Society of Mechanical Sciences and Engineering
container_volume 43
creator da Silva, Thiago
Venter, Giuliana Sardi
Bavastri, Carlos Alberto
description Magnetorheological elastomers (MRE) are composite materials, comprised of a viscoelastic matrix with ferromagnetic particles added to it, which enables variation in the dynamic properties through applied magnetic fields. The present work aims to experimentally identify the effects of frequency, temperature, and magnetic field on such properties. In the frequency domain, transmissibility tests of a single-degree-of-freedom system were performed, varying the applied magnetic field and temperature. An inverse optimization problem was used to fit the experimental transmissibility curves with an analytical model for the MRE. Thus, it was possible to obtain the parameters of the material that best describe the experimental data. Experimental results showed that MRE significantly increases the system stiffness, especially at higher temperatures. The comparison between experimental and analytical curves validated the mathematical model with R 2 values above 0.96. A component of variation analysis showed that a variation in temperature has the most relevant effect on the MRE dynamic properties.
doi_str_mv 10.1007/s40430-021-02821-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2479466564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479466564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8d15ef17bbe6b7395cc56c96fce690b91379ee1cff12106b126cb430a47eef723</originalsourceid><addsrcrecordid>eNp9kM9PwyAUx4nRxDn9BzyReF0VSgvlaBZ_JTNe9EwofWxd2lKBHba_XraaePPweC_kfb9f-CB0S8k9JUQ8hIIUjGQkp6mqdB7O0IxWhGeMS3qeZi6qrKxEdYmuQtgSwvKSlzMU3vV6gOj8Blzn1q3RHYZOh-h68LjZD7pvDTYb7bWJ4NuDjq0bcA9x4xps3BDaJl0PaxyhH8HruPOwwNbD9w4Gs19gPTS4P4UkI9tC11yjC6u7ADe_fY6-np8-l6_Z6uPlbfm4ygyjMmZVQ0uwVNQ18FowWRpTciO5NcAlqSVlQgJQYy3NKeE1zbmpEwVdCAArcjZHd5Pv6F16TYhq63Z-SJEqL4QsOC95kbbyact4F4IHq0bf9trvFSXqCFdNcFWCq05w1SGJ2CQK4_Hz4P-s_1H9ADo1gKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479466564</pqid></control><display><type>article</type><title>Magnetorheological elastomer dynamic characterization method considering temperature, frequency, and magnetic field</title><source>SpringerLink Journals - AutoHoldings</source><creator>da Silva, Thiago ; Venter, Giuliana Sardi ; Bavastri, Carlos Alberto</creator><creatorcontrib>da Silva, Thiago ; Venter, Giuliana Sardi ; Bavastri, Carlos Alberto</creatorcontrib><description>Magnetorheological elastomers (MRE) are composite materials, comprised of a viscoelastic matrix with ferromagnetic particles added to it, which enables variation in the dynamic properties through applied magnetic fields. The present work aims to experimentally identify the effects of frequency, temperature, and magnetic field on such properties. In the frequency domain, transmissibility tests of a single-degree-of-freedom system were performed, varying the applied magnetic field and temperature. An inverse optimization problem was used to fit the experimental transmissibility curves with an analytical model for the MRE. Thus, it was possible to obtain the parameters of the material that best describe the experimental data. Experimental results showed that MRE significantly increases the system stiffness, especially at higher temperatures. The comparison between experimental and analytical curves validated the mathematical model with R 2 values above 0.96. A component of variation analysis showed that a variation in temperature has the most relevant effect on the MRE dynamic properties.</description><identifier>ISSN: 1678-5878</identifier><identifier>EISSN: 1806-3691</identifier><identifier>DOI: 10.1007/s40430-021-02821-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Composite materials ; Elastomers ; Engineering ; Ferromagnetic materials ; Magnetic fields ; Magnetic properties ; Mathematical models ; Matrix methods ; Mechanical Engineering ; Optimization ; Stiffness ; Technical Paper</subject><ispartof>Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021-02, Vol.43 (2), Article 70</ispartof><rights>The Brazilian Society of Mechanical Sciences and Engineering 2021</rights><rights>The Brazilian Society of Mechanical Sciences and Engineering 2021.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8d15ef17bbe6b7395cc56c96fce690b91379ee1cff12106b126cb430a47eef723</citedby><cites>FETCH-LOGICAL-c319t-8d15ef17bbe6b7395cc56c96fce690b91379ee1cff12106b126cb430a47eef723</cites><orcidid>0000-0002-6422-5896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40430-021-02821-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40430-021-02821-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>da Silva, Thiago</creatorcontrib><creatorcontrib>Venter, Giuliana Sardi</creatorcontrib><creatorcontrib>Bavastri, Carlos Alberto</creatorcontrib><title>Magnetorheological elastomer dynamic characterization method considering temperature, frequency, and magnetic field</title><title>Journal of the Brazilian Society of Mechanical Sciences and Engineering</title><addtitle>J Braz. Soc. Mech. Sci. Eng</addtitle><description>Magnetorheological elastomers (MRE) are composite materials, comprised of a viscoelastic matrix with ferromagnetic particles added to it, which enables variation in the dynamic properties through applied magnetic fields. The present work aims to experimentally identify the effects of frequency, temperature, and magnetic field on such properties. In the frequency domain, transmissibility tests of a single-degree-of-freedom system were performed, varying the applied magnetic field and temperature. An inverse optimization problem was used to fit the experimental transmissibility curves with an analytical model for the MRE. Thus, it was possible to obtain the parameters of the material that best describe the experimental data. Experimental results showed that MRE significantly increases the system stiffness, especially at higher temperatures. The comparison between experimental and analytical curves validated the mathematical model with R 2 values above 0.96. A component of variation analysis showed that a variation in temperature has the most relevant effect on the MRE dynamic properties.</description><subject>Composite materials</subject><subject>Elastomers</subject><subject>Engineering</subject><subject>Ferromagnetic materials</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Mathematical models</subject><subject>Matrix methods</subject><subject>Mechanical Engineering</subject><subject>Optimization</subject><subject>Stiffness</subject><subject>Technical Paper</subject><issn>1678-5878</issn><issn>1806-3691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM9PwyAUx4nRxDn9BzyReF0VSgvlaBZ_JTNe9EwofWxd2lKBHba_XraaePPweC_kfb9f-CB0S8k9JUQ8hIIUjGQkp6mqdB7O0IxWhGeMS3qeZi6qrKxEdYmuQtgSwvKSlzMU3vV6gOj8Blzn1q3RHYZOh-h68LjZD7pvDTYb7bWJ4NuDjq0bcA9x4xps3BDaJl0PaxyhH8HruPOwwNbD9w4Gs19gPTS4P4UkI9tC11yjC6u7ADe_fY6-np8-l6_Z6uPlbfm4ygyjMmZVQ0uwVNQ18FowWRpTciO5NcAlqSVlQgJQYy3NKeE1zbmpEwVdCAArcjZHd5Pv6F16TYhq63Z-SJEqL4QsOC95kbbyact4F4IHq0bf9trvFSXqCFdNcFWCq05w1SGJ2CQK4_Hz4P-s_1H9ADo1gKE</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>da Silva, Thiago</creator><creator>Venter, Giuliana Sardi</creator><creator>Bavastri, Carlos Alberto</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6422-5896</orcidid></search><sort><creationdate>20210201</creationdate><title>Magnetorheological elastomer dynamic characterization method considering temperature, frequency, and magnetic field</title><author>da Silva, Thiago ; Venter, Giuliana Sardi ; Bavastri, Carlos Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8d15ef17bbe6b7395cc56c96fce690b91379ee1cff12106b126cb430a47eef723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Composite materials</topic><topic>Elastomers</topic><topic>Engineering</topic><topic>Ferromagnetic materials</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Mathematical models</topic><topic>Matrix methods</topic><topic>Mechanical Engineering</topic><topic>Optimization</topic><topic>Stiffness</topic><topic>Technical Paper</topic><toplevel>online_resources</toplevel><creatorcontrib>da Silva, Thiago</creatorcontrib><creatorcontrib>Venter, Giuliana Sardi</creatorcontrib><creatorcontrib>Bavastri, Carlos Alberto</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>da Silva, Thiago</au><au>Venter, Giuliana Sardi</au><au>Bavastri, Carlos Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetorheological elastomer dynamic characterization method considering temperature, frequency, and magnetic field</atitle><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle><stitle>J Braz. Soc. Mech. Sci. Eng</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>43</volume><issue>2</issue><artnum>70</artnum><issn>1678-5878</issn><eissn>1806-3691</eissn><abstract>Magnetorheological elastomers (MRE) are composite materials, comprised of a viscoelastic matrix with ferromagnetic particles added to it, which enables variation in the dynamic properties through applied magnetic fields. The present work aims to experimentally identify the effects of frequency, temperature, and magnetic field on such properties. In the frequency domain, transmissibility tests of a single-degree-of-freedom system were performed, varying the applied magnetic field and temperature. An inverse optimization problem was used to fit the experimental transmissibility curves with an analytical model for the MRE. Thus, it was possible to obtain the parameters of the material that best describe the experimental data. Experimental results showed that MRE significantly increases the system stiffness, especially at higher temperatures. The comparison between experimental and analytical curves validated the mathematical model with R 2 values above 0.96. A component of variation analysis showed that a variation in temperature has the most relevant effect on the MRE dynamic properties.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40430-021-02821-z</doi><orcidid>https://orcid.org/0000-0002-6422-5896</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1678-5878
ispartof Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021-02, Vol.43 (2), Article 70
issn 1678-5878
1806-3691
language eng
recordid cdi_proquest_journals_2479466564
source SpringerLink Journals - AutoHoldings
subjects Composite materials
Elastomers
Engineering
Ferromagnetic materials
Magnetic fields
Magnetic properties
Mathematical models
Matrix methods
Mechanical Engineering
Optimization
Stiffness
Technical Paper
title Magnetorheological elastomer dynamic characterization method considering temperature, frequency, and magnetic field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T20%3A21%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetorheological%20elastomer%20dynamic%20characterization%20method%20considering%20temperature,%20frequency,%20and%20magnetic%20field&rft.jtitle=Journal%20of%20the%20Brazilian%20Society%20of%20Mechanical%20Sciences%20and%20Engineering&rft.au=da%20Silva,%20Thiago&rft.date=2021-02-01&rft.volume=43&rft.issue=2&rft.artnum=70&rft.issn=1678-5878&rft.eissn=1806-3691&rft_id=info:doi/10.1007/s40430-021-02821-z&rft_dat=%3Cproquest_cross%3E2479466564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479466564&rft_id=info:pmid/&rfr_iscdi=true