Magnetorheological elastomer dynamic characterization method considering temperature, frequency, and magnetic field
Magnetorheological elastomers (MRE) are composite materials, comprised of a viscoelastic matrix with ferromagnetic particles added to it, which enables variation in the dynamic properties through applied magnetic fields. The present work aims to experimentally identify the effects of frequency, temp...
Gespeichert in:
Veröffentlicht in: | Journal of the Brazilian Society of Mechanical Sciences and Engineering 2021-02, Vol.43 (2), Article 70 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of the Brazilian Society of Mechanical Sciences and Engineering |
container_volume | 43 |
creator | da Silva, Thiago Venter, Giuliana Sardi Bavastri, Carlos Alberto |
description | Magnetorheological elastomers (MRE) are composite materials, comprised of a viscoelastic matrix with ferromagnetic particles added to it, which enables variation in the dynamic properties through applied magnetic fields. The present work aims to experimentally identify the effects of frequency, temperature, and magnetic field on such properties. In the frequency domain, transmissibility tests of a single-degree-of-freedom system were performed, varying the applied magnetic field and temperature. An inverse optimization problem was used to fit the experimental transmissibility curves with an analytical model for the MRE. Thus, it was possible to obtain the parameters of the material that best describe the experimental data. Experimental results showed that MRE significantly increases the system stiffness, especially at higher temperatures. The comparison between experimental and analytical curves validated the mathematical model with
R
2
values above 0.96. A component of variation analysis showed that a variation in temperature has the most relevant effect on the MRE dynamic properties. |
doi_str_mv | 10.1007/s40430-021-02821-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2479466564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479466564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8d15ef17bbe6b7395cc56c96fce690b91379ee1cff12106b126cb430a47eef723</originalsourceid><addsrcrecordid>eNp9kM9PwyAUx4nRxDn9BzyReF0VSgvlaBZ_JTNe9EwofWxd2lKBHba_XraaePPweC_kfb9f-CB0S8k9JUQ8hIIUjGQkp6mqdB7O0IxWhGeMS3qeZi6qrKxEdYmuQtgSwvKSlzMU3vV6gOj8Blzn1q3RHYZOh-h68LjZD7pvDTYb7bWJ4NuDjq0bcA9x4xps3BDaJl0PaxyhH8HruPOwwNbD9w4Gs19gPTS4P4UkI9tC11yjC6u7ADe_fY6-np8-l6_Z6uPlbfm4ygyjMmZVQ0uwVNQ18FowWRpTciO5NcAlqSVlQgJQYy3NKeE1zbmpEwVdCAArcjZHd5Pv6F16TYhq63Z-SJEqL4QsOC95kbbyact4F4IHq0bf9trvFSXqCFdNcFWCq05w1SGJ2CQK4_Hz4P-s_1H9ADo1gKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479466564</pqid></control><display><type>article</type><title>Magnetorheological elastomer dynamic characterization method considering temperature, frequency, and magnetic field</title><source>SpringerLink Journals - AutoHoldings</source><creator>da Silva, Thiago ; Venter, Giuliana Sardi ; Bavastri, Carlos Alberto</creator><creatorcontrib>da Silva, Thiago ; Venter, Giuliana Sardi ; Bavastri, Carlos Alberto</creatorcontrib><description>Magnetorheological elastomers (MRE) are composite materials, comprised of a viscoelastic matrix with ferromagnetic particles added to it, which enables variation in the dynamic properties through applied magnetic fields. The present work aims to experimentally identify the effects of frequency, temperature, and magnetic field on such properties. In the frequency domain, transmissibility tests of a single-degree-of-freedom system were performed, varying the applied magnetic field and temperature. An inverse optimization problem was used to fit the experimental transmissibility curves with an analytical model for the MRE. Thus, it was possible to obtain the parameters of the material that best describe the experimental data. Experimental results showed that MRE significantly increases the system stiffness, especially at higher temperatures. The comparison between experimental and analytical curves validated the mathematical model with
R
2
values above 0.96. A component of variation analysis showed that a variation in temperature has the most relevant effect on the MRE dynamic properties.</description><identifier>ISSN: 1678-5878</identifier><identifier>EISSN: 1806-3691</identifier><identifier>DOI: 10.1007/s40430-021-02821-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Composite materials ; Elastomers ; Engineering ; Ferromagnetic materials ; Magnetic fields ; Magnetic properties ; Mathematical models ; Matrix methods ; Mechanical Engineering ; Optimization ; Stiffness ; Technical Paper</subject><ispartof>Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021-02, Vol.43 (2), Article 70</ispartof><rights>The Brazilian Society of Mechanical Sciences and Engineering 2021</rights><rights>The Brazilian Society of Mechanical Sciences and Engineering 2021.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8d15ef17bbe6b7395cc56c96fce690b91379ee1cff12106b126cb430a47eef723</citedby><cites>FETCH-LOGICAL-c319t-8d15ef17bbe6b7395cc56c96fce690b91379ee1cff12106b126cb430a47eef723</cites><orcidid>0000-0002-6422-5896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40430-021-02821-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40430-021-02821-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>da Silva, Thiago</creatorcontrib><creatorcontrib>Venter, Giuliana Sardi</creatorcontrib><creatorcontrib>Bavastri, Carlos Alberto</creatorcontrib><title>Magnetorheological elastomer dynamic characterization method considering temperature, frequency, and magnetic field</title><title>Journal of the Brazilian Society of Mechanical Sciences and Engineering</title><addtitle>J Braz. Soc. Mech. Sci. Eng</addtitle><description>Magnetorheological elastomers (MRE) are composite materials, comprised of a viscoelastic matrix with ferromagnetic particles added to it, which enables variation in the dynamic properties through applied magnetic fields. The present work aims to experimentally identify the effects of frequency, temperature, and magnetic field on such properties. In the frequency domain, transmissibility tests of a single-degree-of-freedom system were performed, varying the applied magnetic field and temperature. An inverse optimization problem was used to fit the experimental transmissibility curves with an analytical model for the MRE. Thus, it was possible to obtain the parameters of the material that best describe the experimental data. Experimental results showed that MRE significantly increases the system stiffness, especially at higher temperatures. The comparison between experimental and analytical curves validated the mathematical model with
R
2
values above 0.96. A component of variation analysis showed that a variation in temperature has the most relevant effect on the MRE dynamic properties.</description><subject>Composite materials</subject><subject>Elastomers</subject><subject>Engineering</subject><subject>Ferromagnetic materials</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Mathematical models</subject><subject>Matrix methods</subject><subject>Mechanical Engineering</subject><subject>Optimization</subject><subject>Stiffness</subject><subject>Technical Paper</subject><issn>1678-5878</issn><issn>1806-3691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM9PwyAUx4nRxDn9BzyReF0VSgvlaBZ_JTNe9EwofWxd2lKBHba_XraaePPweC_kfb9f-CB0S8k9JUQ8hIIUjGQkp6mqdB7O0IxWhGeMS3qeZi6qrKxEdYmuQtgSwvKSlzMU3vV6gOj8Blzn1q3RHYZOh-h68LjZD7pvDTYb7bWJ4NuDjq0bcA9x4xps3BDaJl0PaxyhH8HruPOwwNbD9w4Gs19gPTS4P4UkI9tC11yjC6u7ADe_fY6-np8-l6_Z6uPlbfm4ygyjMmZVQ0uwVNQ18FowWRpTciO5NcAlqSVlQgJQYy3NKeE1zbmpEwVdCAArcjZHd5Pv6F16TYhq63Z-SJEqL4QsOC95kbbyact4F4IHq0bf9trvFSXqCFdNcFWCq05w1SGJ2CQK4_Hz4P-s_1H9ADo1gKE</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>da Silva, Thiago</creator><creator>Venter, Giuliana Sardi</creator><creator>Bavastri, Carlos Alberto</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6422-5896</orcidid></search><sort><creationdate>20210201</creationdate><title>Magnetorheological elastomer dynamic characterization method considering temperature, frequency, and magnetic field</title><author>da Silva, Thiago ; Venter, Giuliana Sardi ; Bavastri, Carlos Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8d15ef17bbe6b7395cc56c96fce690b91379ee1cff12106b126cb430a47eef723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Composite materials</topic><topic>Elastomers</topic><topic>Engineering</topic><topic>Ferromagnetic materials</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Mathematical models</topic><topic>Matrix methods</topic><topic>Mechanical Engineering</topic><topic>Optimization</topic><topic>Stiffness</topic><topic>Technical Paper</topic><toplevel>online_resources</toplevel><creatorcontrib>da Silva, Thiago</creatorcontrib><creatorcontrib>Venter, Giuliana Sardi</creatorcontrib><creatorcontrib>Bavastri, Carlos Alberto</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>da Silva, Thiago</au><au>Venter, Giuliana Sardi</au><au>Bavastri, Carlos Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetorheological elastomer dynamic characterization method considering temperature, frequency, and magnetic field</atitle><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle><stitle>J Braz. Soc. Mech. Sci. Eng</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>43</volume><issue>2</issue><artnum>70</artnum><issn>1678-5878</issn><eissn>1806-3691</eissn><abstract>Magnetorheological elastomers (MRE) are composite materials, comprised of a viscoelastic matrix with ferromagnetic particles added to it, which enables variation in the dynamic properties through applied magnetic fields. The present work aims to experimentally identify the effects of frequency, temperature, and magnetic field on such properties. In the frequency domain, transmissibility tests of a single-degree-of-freedom system were performed, varying the applied magnetic field and temperature. An inverse optimization problem was used to fit the experimental transmissibility curves with an analytical model for the MRE. Thus, it was possible to obtain the parameters of the material that best describe the experimental data. Experimental results showed that MRE significantly increases the system stiffness, especially at higher temperatures. The comparison between experimental and analytical curves validated the mathematical model with
R
2
values above 0.96. A component of variation analysis showed that a variation in temperature has the most relevant effect on the MRE dynamic properties.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40430-021-02821-z</doi><orcidid>https://orcid.org/0000-0002-6422-5896</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1678-5878 |
ispartof | Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021-02, Vol.43 (2), Article 70 |
issn | 1678-5878 1806-3691 |
language | eng |
recordid | cdi_proquest_journals_2479466564 |
source | SpringerLink Journals - AutoHoldings |
subjects | Composite materials Elastomers Engineering Ferromagnetic materials Magnetic fields Magnetic properties Mathematical models Matrix methods Mechanical Engineering Optimization Stiffness Technical Paper |
title | Magnetorheological elastomer dynamic characterization method considering temperature, frequency, and magnetic field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T20%3A21%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetorheological%20elastomer%20dynamic%20characterization%20method%20considering%20temperature,%20frequency,%20and%20magnetic%20field&rft.jtitle=Journal%20of%20the%20Brazilian%20Society%20of%20Mechanical%20Sciences%20and%20Engineering&rft.au=da%20Silva,%20Thiago&rft.date=2021-02-01&rft.volume=43&rft.issue=2&rft.artnum=70&rft.issn=1678-5878&rft.eissn=1806-3691&rft_id=info:doi/10.1007/s40430-021-02821-z&rft_dat=%3Cproquest_cross%3E2479466564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479466564&rft_id=info:pmid/&rfr_iscdi=true |