Magnetorheological elastomer dynamic characterization method considering temperature, frequency, and magnetic field
Magnetorheological elastomers (MRE) are composite materials, comprised of a viscoelastic matrix with ferromagnetic particles added to it, which enables variation in the dynamic properties through applied magnetic fields. The present work aims to experimentally identify the effects of frequency, temp...
Gespeichert in:
Veröffentlicht in: | Journal of the Brazilian Society of Mechanical Sciences and Engineering 2021-02, Vol.43 (2), Article 70 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Magnetorheological elastomers (MRE) are composite materials, comprised of a viscoelastic matrix with ferromagnetic particles added to it, which enables variation in the dynamic properties through applied magnetic fields. The present work aims to experimentally identify the effects of frequency, temperature, and magnetic field on such properties. In the frequency domain, transmissibility tests of a single-degree-of-freedom system were performed, varying the applied magnetic field and temperature. An inverse optimization problem was used to fit the experimental transmissibility curves with an analytical model for the MRE. Thus, it was possible to obtain the parameters of the material that best describe the experimental data. Experimental results showed that MRE significantly increases the system stiffness, especially at higher temperatures. The comparison between experimental and analytical curves validated the mathematical model with
R
2
values above 0.96. A component of variation analysis showed that a variation in temperature has the most relevant effect on the MRE dynamic properties. |
---|---|
ISSN: | 1678-5878 1806-3691 |
DOI: | 10.1007/s40430-021-02821-z |