Weak Limits of the Measures of Maximal Entropy for Orthogonal Polynomials

In this paper we study the sequence of orthonormal polynomials { P n ( μ ; z )} defined by a Borel probability measure μ with non-polar compact support S ( μ ) ⊂ C . For each n ≥ 2 let ω n denote the unique measure of maximal entropy for P n ( μ ; z ). We prove that the sequence { ω n } n is pre-com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Potential analysis 2021-02, Vol.54 (2), p.219-225
Hauptverfasser: Petersen, Carsten Lunde, Uhre, Eva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study the sequence of orthonormal polynomials { P n ( μ ; z )} defined by a Borel probability measure μ with non-polar compact support S ( μ ) ⊂ C . For each n ≥ 2 let ω n denote the unique measure of maximal entropy for P n ( μ ; z ). We prove that the sequence { ω n } n is pre-compact for the weak-* topology and that for any weak-* limit ν of a convergent sub-sequence { ω n k } , the support S ( ν ) is contained in the filled-in or polynomial-convex hull of the support S ( μ ) for μ . And for n -th root regular measures μ the full sequence { ω n } n converges weak-* to the equilibrium measure ω on S ( μ ).
ISSN:0926-2601
1572-929X
DOI:10.1007/s11118-019-09824-5