Weak Limits of the Measures of Maximal Entropy for Orthogonal Polynomials
In this paper we study the sequence of orthonormal polynomials { P n ( μ ; z )} defined by a Borel probability measure μ with non-polar compact support S ( μ ) ⊂ C . For each n ≥ 2 let ω n denote the unique measure of maximal entropy for P n ( μ ; z ). We prove that the sequence { ω n } n is pre-com...
Gespeichert in:
Veröffentlicht in: | Potential analysis 2021-02, Vol.54 (2), p.219-225 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study the sequence of orthonormal polynomials {
P
n
(
μ
;
z
)} defined by a Borel probability measure
μ
with non-polar compact support
S
(
μ
)
⊂
C
. For each
n
≥ 2 let
ω
n
denote the unique measure of maximal entropy for
P
n
(
μ
;
z
). We prove that the sequence {
ω
n
}
n
is pre-compact for the weak-* topology and that for any weak-* limit
ν
of a convergent sub-sequence
{
ω
n
k
}
, the support
S
(
ν
) is contained in the filled-in or polynomial-convex hull of the support
S
(
μ
) for
μ
. And for
n
-th root regular measures
μ
the full sequence {
ω
n
}
n
converges weak-* to the equilibrium measure
ω
on
S
(
μ
). |
---|---|
ISSN: | 0926-2601 1572-929X |
DOI: | 10.1007/s11118-019-09824-5 |