Scelidosaurus harrisonii (Dinosauria: Ornithischia) from the Early Jurassic of Dorset, England: biology and phylogenetic relationships

Abstract A layer of keratinous scutes encased the skull of Scelidosaurus. The neurocranium and the associated principal sensory systems of this dinosaur are described. The cranial musculature is reconstructed and a subsequent functional analysis suggests that jaw motion was orthal, allowing pulping...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zoological journal of the Linnean Society 2021-01, Vol.191 (1), p.1-86
1. Verfasser: Norman, David B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract A layer of keratinous scutes encased the skull of Scelidosaurus. The neurocranium and the associated principal sensory systems of this dinosaur are described. The cranial musculature is reconstructed and a subsequent functional analysis suggests that jaw motion was orthal, allowing pulping of vegetation and some high-angle shearing between opposing teeth. Wishboning of the lower jaw was enabled by transverse displacement of the quadrates, and the long-axis mandibular torsion that occurred during the chewing cycle was permitted by flexibility at the dentary symphysis. Limb proportions and pectoral and pelvic musculature reconstructions suggest that Scelidosaurus was a facultative quadruped of ‘average’ locomotor ability. It retained some anatomical features indicative of a bipedal-cursorial ancestry. Hindlimb motion was oblique-to-parasagittal to accommodate the girth of the abdomen. Scelidosaurus used a combination of costal and abdominally driven aspiration. The hypothesis that respiration was an ‘evolutionary driver’ of opisthopuby in all dinosaurs is overly simplistic. A critical assessment of datasets used to analyse the systematics of ornithischians (and thyreophoran subclades) has led to a revised dataset that positions Scelidosaurus as a stem ankylosaur, rather than a stem thyreophoran. The value of phylogenetic definitions is reconsidered in the light of the new thyreophoran cladogram.
ISSN:0024-4082
1096-3642
DOI:10.1093/zoolinnean/zlaa061