Optoelectronic synaptic transistors based on upconverting nanoparticles

Neuromorphic computing inspired by the functions of human brain has attracted much attention in the research area of artificial intelligence. Herein, we report an optoelectronic synapse based on a polyvinylpyrrolidone (PVPy)-upconverting nanoparticle (UCNP) hybrid floating gate transistor. The UCNP-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2021-01, Vol.9 (2), p.64-648
Hauptverfasser: Lian, Haixia, Liao, Qiufan, Yang, Baidong, Zhai, Yongbiao, Han, Su-Ting, Zhou, Ye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neuromorphic computing inspired by the functions of human brain has attracted much attention in the research area of artificial intelligence. Herein, we report an optoelectronic synapse based on a polyvinylpyrrolidone (PVPy)-upconverting nanoparticle (UCNP) hybrid floating gate transistor. The UCNP-based synaptic transistor exhibits a remarkable near-infrared (NIR)-induced de-trapping behaviour as well as a long retention time. Furthermore, our device is employed to successfully emulate various synaptic functions including postsynaptic current with different duration times and pulse amplitudes, paired-pulse facilitation/depression, transition from short-term plasticity to long-term plasticity and learning-forgetting-relearning processes. Overall, this work may open up a new opportunity for NIR optoelectronic synapses. Transistors based on upconverting nanoparticles enable the simulation of artificial synaptic functions.
ISSN:2050-7526
2050-7534
DOI:10.1039/d0tc04115g