Toward a standardized procedure for charcoal analysis
Sedimentary charcoal records are used for understanding fire as an earth system process; however, no standardized laboratory methodology exists. Varying sample volumes and chemical treatments (i.e., type of chemical for length of time) are used for the deflocculation and extraction of charcoal from...
Gespeichert in:
Veröffentlicht in: | Quaternary research 2021-01, Vol.99, p.329-340 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sedimentary charcoal records are used for understanding fire as an earth system process; however, no standardized laboratory methodology exists. Varying sample volumes and chemical treatments (i.e., type of chemical for length of time) are used for the deflocculation and extraction of charcoal from sediment samples. Here, we present the first systematic assessment of the effect of commonly used chemicals on charcoal area and number of fragments. In modern charcoal the area of fragments was significantly different depending on the chemical treatment. We subsequently applied H2O2 (33%), NaClO (12.5%), and HNO3 (50%) to a late-glacial–early Holocene paleorecord and tested different sample volumes. The effects of the treatments were consistent between modern and fossil experiments, which demonstrates the validity of applying results from the modern experiment to the fossil records. Based on our experiments we suggest (1) H2O2 33%, especially for highly organic sediments; (2) avoidance of high concentrations of NaClO for prolonged periods of time, and of HNO3; and (3) samples of 1 cm3 provided typically consistent profiles. Our results indicate that charcoal properties can be influenced by treatment type and sample volume, thus emphasizing the need for a common protocol to enable reliable multi-study comparisons or composite fire histories. |
---|---|
ISSN: | 0033-5894 1096-0287 |
DOI: | 10.1017/qua.2020.56 |