Critical Risk Indicators (CRIs) for the electric power grid: A survey and discussion of interconnected effects

The electric power grid is a critical societal resource connecting multiple infrastructural domains such as agriculture, transportation, and manufacturing. The electrical grid as an infrastructure is shaped by human activity and public policy in terms of demand and supply requirements. Further, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-06
Hauptverfasser: Che-Castaldo, Judy P, Cousin, Rémi, Stefani Daryanto, Deng, Grace, Feng, Mei-Ling E, Gupta, Rajesh K, Hong, Dezhi, McGranaghan, Ryan M, Owolabi, Olukunle O, Qu, Tianyi, Ren, Wei, Schafer, Toryn L J, Sharma, Ashutosh, Shen, Chaopeng, Sherman, Mila Getmansky, Sunter, Deborah A, Wang, Lan, Matteson, David S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The electric power grid is a critical societal resource connecting multiple infrastructural domains such as agriculture, transportation, and manufacturing. The electrical grid as an infrastructure is shaped by human activity and public policy in terms of demand and supply requirements. Further, the grid is subject to changes and stresses due to solar weather, climate, hydrology, and ecology. The emerging interconnected and complex network dependencies make such interactions increasingly dynamic causing potentially large swings, thus presenting new challenges to manage the coupled human-natural system. This paper provides a survey of models and methods that seek to explore the significant interconnected impact of the electric power grid and interdependent domains. We also provide relevant critical risk indicators (CRIs) across diverse domains that may influence electric power grid risks, including climate, ecology, hydrology, finance, space weather, and agriculture. We discuss the convergence of indicators from individual domains to explore possible systemic risk, i.e., holistic risk arising from cross-domains interconnections. Our study provides an important first step towards data-driven analysis and predictive modeling of risks in the coupled interconnected systems. Further, we propose a compositional approach to risk assessment that incorporates diverse domain expertise and information, data science, and computer science to identify domain-specific CRIs and their union in systemic risk indicators.
ISSN:2331-8422