Computing the 2-adic complexity of two classes of Ding-Helleseth generalized cyclotomic sequences of periods of twin prime products
This paper contributes to compute the 2-adic complexity of two classes of Ding-Helleseth generalized cyclotomic sequences. Results show that the 2-adic complexity of these sequences is good enough to resist the attack by the rational approximation algorithm.
Gespeichert in:
Veröffentlicht in: | Cryptography and communications 2021, Vol.13 (1), p.15-26 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper contributes to compute the 2-adic complexity of two classes of Ding-Helleseth generalized cyclotomic sequences. Results show that the 2-adic complexity of these sequences is good enough to resist the attack by the rational approximation algorithm. |
---|---|
ISSN: | 1936-2447 1936-2455 |
DOI: | 10.1007/s12095-020-00451-1 |