Spectra of chains connected to complete graphs

We characterize the spectrum of the Laplacian of graphs composed of one or two finite or infinite chains connected to a complete graph. We show the existence of localized eigenvectors of two types, eigenvectors that vanish exactly outside the complete graph and eigenvectors that decrease exponential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2020-11, Vol.605, p.29-62
Hauptverfasser: Caputo, J.-G., Cruz-Pacheco, G., Knippel, A., Panayotaros, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We characterize the spectrum of the Laplacian of graphs composed of one or two finite or infinite chains connected to a complete graph. We show the existence of localized eigenvectors of two types, eigenvectors that vanish exactly outside the complete graph and eigenvectors that decrease exponentially outside the complete graph. Our results also imply gaps between the eigenvalues corresponding to localized and extended eigenvectors.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2020.07.011