Spectra of chains connected to complete graphs
We characterize the spectrum of the Laplacian of graphs composed of one or two finite or infinite chains connected to a complete graph. We show the existence of localized eigenvectors of two types, eigenvectors that vanish exactly outside the complete graph and eigenvectors that decrease exponential...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2020-11, Vol.605, p.29-62 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We characterize the spectrum of the Laplacian of graphs composed of one or two finite or infinite chains connected to a complete graph. We show the existence of localized eigenvectors of two types, eigenvectors that vanish exactly outside the complete graph and eigenvectors that decrease exponentially outside the complete graph. Our results also imply gaps between the eigenvalues corresponding to localized and extended eigenvectors. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2020.07.011 |