Orthogonality preserving transformations of Hilbert Grassmannians
Let H be a complex Hilbert space and let Gk(H) be the Grassmannian formed by k-dimensional subspaces of H. Suppose that dimH>2k and f is an orthogonality preserving injective transformation of Gk(H), i.e. for any orthogonal X,Y∈Gk(H) the images f(X),f(Y) are orthogonal. Furthermore, if dimH=n i...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2020-11, Vol.605, p.180-189 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let H be a complex Hilbert space and let Gk(H) be the Grassmannian formed by k-dimensional subspaces of H. Suppose that dimH>2k and f is an orthogonality preserving injective transformation of Gk(H), i.e. for any orthogonal X,Y∈Gk(H) the images f(X),f(Y) are orthogonal. Furthermore, if dimH=n is finite, then n=mk+i for some integers m≥2 and i∈{0,1,…,k−1} (for i=0 we have m≥3). We show that f is a bijection induced by a unitary or anti-unitary operator if i∈{0,1,2,3} or m≥i+1≥5; in particular, the statement holds for k∈{1,2,3,4} and, if k≥5, then there are precisely (k−4)(k+1)/2 values of n such that the above condition is not satisfied. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2020.07.019 |