Parameter Estimation in a PO3G Model with Temperature Effects

A comprehensive dataset containing 1779 measured values, collected from seven experimental runs, is used for parameter estimation in a model for batch polycondensation of biobased 1,3‐propanediol. The data are from dynamic experiments conducted between 160 and 180 °C using a super‐acid catalyst with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular theory and simulations 2021-01, Vol.30 (1), p.n/a
Hauptverfasser: Vo, Anh‐Duong Dieu, Spence, Rupert E., McAuley, Kimberley B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A comprehensive dataset containing 1779 measured values, collected from seven experimental runs, is used for parameter estimation in a model for batch polycondensation of biobased 1,3‐propanediol. The data are from dynamic experiments conducted between 160 and 180 °C using a super‐acid catalyst with concentrations between 0.1 and 0.25 wt%. The model accounts for generation, consumption, and evaporation of linear and cyclic oligomers, the inhibitory influence of water on the rate of polycondensation, and the dynamic behavior of an overhead condenser. In total, the model contains 70 kinetic, transport, and thermodynamic parameters. A mean‐squared‐error criterion reveals that the influence of temperature on mass‐transfer coefficients is significant. The model provides a good fit to the data and also gives reliable predictions of validation data that are not used in parameter estimation. Typical deviations between model predictions and data are within 1.75% of average measured values for linear and cyclic oligomers. A comprehensive model that accounts for temperature effects is developed for polycondensation of 1,3‐propanediol. Model equations and parameter estimates result in good fits to data used for parameter estimation and to reliable predictions of validation data. The influence of temperature on mass‐transfer coefficients is significant and should be included when simulating reactor behavior.
ISSN:1022-1344
1521-3919
DOI:10.1002/mats.202000061