Multiplicity and concentration results for a (p, q)-Laplacian problem in RN

In this paper, we study the multiplicity and concentration of positive solutions for the following ( p ,  q )-Laplacian problem: - Δ p u - Δ q u + V ( ε x ) | u | p - 2 u + | u | q - 2 u = f ( u ) in R N , u ∈ W 1 , p ( R N ) ∩ W 1 , q ( R N ) , u > 0 in R N , where ε > 0 is a small parameter,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2021, Vol.72 (1)
Hauptverfasser: Ambrosio, Vincenzo, Repovš, Dušan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Zeitschrift für angewandte Mathematik und Physik
container_volume 72
creator Ambrosio, Vincenzo
Repovš, Dušan
description In this paper, we study the multiplicity and concentration of positive solutions for the following ( p ,  q )-Laplacian problem: - Δ p u - Δ q u + V ( ε x ) | u | p - 2 u + | u | q - 2 u = f ( u ) in R N , u ∈ W 1 , p ( R N ) ∩ W 1 , q ( R N ) , u > 0 in R N , where ε > 0 is a small parameter, 1 < p < q < N , Δ r u = div ( | ∇ u | r - 2 ∇ u ) , with r ∈ { p , q } , is the r -Laplacian operator, V : R N → R is a continuous function satisfying the global Rabinowitz condition, and f : R → R is a continuous function with subcritical growth. Using suitable variational arguments and Ljusternik–Schnirelmann category theory, we investigate the relation between the number of positive solutions and the topology of the set where V attains its minimum for small ε .
doi_str_mv 10.1007/s00033-020-01466-7
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2478787841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478787841</sourcerecordid><originalsourceid>FETCH-LOGICAL-p727-fb1ca16254c462acdd09e1eb965db030df449c3b3f303d5ae2f30930d228d883</originalsourceid><addsrcrecordid>eNpFkMtKxDAUhoMoOI6-gKuAGwWjJ5c27VKG8QJVQd2HNEklQ007SWfh2_gsPpkZR5CzOBc-zg8fQqcUriiAvE4AwDkBBgSoKEsi99CMirzWwOt9NAMQgjAmi0N0lNIq45ICn6HmcdNPfuy98dMn1sFiMwTjwhT15IeAo0sZSLgbItb4fLz8_lpfkEaPvTZeBzzGoe3dB_YBvzwdo4NO98md_PU5er1dvi3uSfN897C4acgomSRdS42mJSuEESXTxlqoHXVtXRa2BQ62E6I2vOUdB24L7Vge6nxnrLJVxefobPc1Z683Lk1qNWxiyIGKCVltS9BM8R2VxujDu4v_FAW1laZ20lSWpn6lKcl_AJ9zXz0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478787841</pqid></control><display><type>article</type><title>Multiplicity and concentration results for a (p, q)-Laplacian problem in RN</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ambrosio, Vincenzo ; Repovš, Dušan</creator><creatorcontrib>Ambrosio, Vincenzo ; Repovš, Dušan</creatorcontrib><description>In this paper, we study the multiplicity and concentration of positive solutions for the following ( p ,  q )-Laplacian problem: - Δ p u - Δ q u + V ( ε x ) | u | p - 2 u + | u | q - 2 u = f ( u ) in R N , u ∈ W 1 , p ( R N ) ∩ W 1 , q ( R N ) , u &gt; 0 in R N , where ε &gt; 0 is a small parameter, 1 &lt; p &lt; q &lt; N , Δ r u = div ( | ∇ u | r - 2 ∇ u ) , with r ∈ { p , q } , is the r -Laplacian operator, V : R N → R is a continuous function satisfying the global Rabinowitz condition, and f : R → R is a continuous function with subcritical growth. Using suitable variational arguments and Ljusternik–Schnirelmann category theory, we investigate the relation between the number of positive solutions and the topology of the set where V attains its minimum for small ε .</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-020-01466-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Continuity (mathematics) ; Engineering ; Mathematical Methods in Physics ; Operators (mathematics) ; Theoretical and Applied Mechanics ; Topology</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2021, Vol.72 (1)</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3439-1428</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-020-01466-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-020-01466-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ambrosio, Vincenzo</creatorcontrib><creatorcontrib>Repovš, Dušan</creatorcontrib><title>Multiplicity and concentration results for a (p, q)-Laplacian problem in RN</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>In this paper, we study the multiplicity and concentration of positive solutions for the following ( p ,  q )-Laplacian problem: - Δ p u - Δ q u + V ( ε x ) | u | p - 2 u + | u | q - 2 u = f ( u ) in R N , u ∈ W 1 , p ( R N ) ∩ W 1 , q ( R N ) , u &gt; 0 in R N , where ε &gt; 0 is a small parameter, 1 &lt; p &lt; q &lt; N , Δ r u = div ( | ∇ u | r - 2 ∇ u ) , with r ∈ { p , q } , is the r -Laplacian operator, V : R N → R is a continuous function satisfying the global Rabinowitz condition, and f : R → R is a continuous function with subcritical growth. Using suitable variational arguments and Ljusternik–Schnirelmann category theory, we investigate the relation between the number of positive solutions and the topology of the set where V attains its minimum for small ε .</description><subject>Continuity (mathematics)</subject><subject>Engineering</subject><subject>Mathematical Methods in Physics</subject><subject>Operators (mathematics)</subject><subject>Theoretical and Applied Mechanics</subject><subject>Topology</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkMtKxDAUhoMoOI6-gKuAGwWjJ5c27VKG8QJVQd2HNEklQ007SWfh2_gsPpkZR5CzOBc-zg8fQqcUriiAvE4AwDkBBgSoKEsi99CMirzWwOt9NAMQgjAmi0N0lNIq45ICn6HmcdNPfuy98dMn1sFiMwTjwhT15IeAo0sZSLgbItb4fLz8_lpfkEaPvTZeBzzGoe3dB_YBvzwdo4NO98md_PU5er1dvi3uSfN897C4acgomSRdS42mJSuEESXTxlqoHXVtXRa2BQ62E6I2vOUdB24L7Vge6nxnrLJVxefobPc1Z683Lk1qNWxiyIGKCVltS9BM8R2VxujDu4v_FAW1laZ20lSWpn6lKcl_AJ9zXz0</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ambrosio, Vincenzo</creator><creator>Repovš, Dušan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0003-3439-1428</orcidid></search><sort><creationdate>2021</creationdate><title>Multiplicity and concentration results for a (p, q)-Laplacian problem in RN</title><author>Ambrosio, Vincenzo ; Repovš, Dušan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p727-fb1ca16254c462acdd09e1eb965db030df449c3b3f303d5ae2f30930d228d883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Continuity (mathematics)</topic><topic>Engineering</topic><topic>Mathematical Methods in Physics</topic><topic>Operators (mathematics)</topic><topic>Theoretical and Applied Mechanics</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ambrosio, Vincenzo</creatorcontrib><creatorcontrib>Repovš, Dušan</creatorcontrib><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ambrosio, Vincenzo</au><au>Repovš, Dušan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplicity and concentration results for a (p, q)-Laplacian problem in RN</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2021</date><risdate>2021</risdate><volume>72</volume><issue>1</issue><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>In this paper, we study the multiplicity and concentration of positive solutions for the following ( p ,  q )-Laplacian problem: - Δ p u - Δ q u + V ( ε x ) | u | p - 2 u + | u | q - 2 u = f ( u ) in R N , u ∈ W 1 , p ( R N ) ∩ W 1 , q ( R N ) , u &gt; 0 in R N , where ε &gt; 0 is a small parameter, 1 &lt; p &lt; q &lt; N , Δ r u = div ( | ∇ u | r - 2 ∇ u ) , with r ∈ { p , q } , is the r -Laplacian operator, V : R N → R is a continuous function satisfying the global Rabinowitz condition, and f : R → R is a continuous function with subcritical growth. Using suitable variational arguments and Ljusternik–Schnirelmann category theory, we investigate the relation between the number of positive solutions and the topology of the set where V attains its minimum for small ε .</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-020-01466-7</doi><orcidid>https://orcid.org/0000-0003-3439-1428</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-2275
ispartof Zeitschrift für angewandte Mathematik und Physik, 2021, Vol.72 (1)
issn 0044-2275
1420-9039
language eng
recordid cdi_proquest_journals_2478787841
source SpringerLink Journals - AutoHoldings
subjects Continuity (mathematics)
Engineering
Mathematical Methods in Physics
Operators (mathematics)
Theoretical and Applied Mechanics
Topology
title Multiplicity and concentration results for a (p, q)-Laplacian problem in RN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A31%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplicity%20and%20concentration%20results%20for%20a%20(p,%C2%A0q)-Laplacian%20problem%20in%20RN&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Ambrosio,%20Vincenzo&rft.date=2021&rft.volume=72&rft.issue=1&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-020-01466-7&rft_dat=%3Cproquest_sprin%3E2478787841%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478787841&rft_id=info:pmid/&rfr_iscdi=true