Multiplicity and concentration results for a (p, q)-Laplacian problem in RN
In this paper, we study the multiplicity and concentration of positive solutions for the following ( p , q )-Laplacian problem: - Δ p u - Δ q u + V ( ε x ) | u | p - 2 u + | u | q - 2 u = f ( u ) in R N , u ∈ W 1 , p ( R N ) ∩ W 1 , q ( R N ) , u > 0 in R N , where ε > 0 is a small parameter,...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2021, Vol.72 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the multiplicity and concentration of positive solutions for the following (
p
,
q
)-Laplacian problem:
-
Δ
p
u
-
Δ
q
u
+
V
(
ε
x
)
|
u
|
p
-
2
u
+
|
u
|
q
-
2
u
=
f
(
u
)
in
R
N
,
u
∈
W
1
,
p
(
R
N
)
∩
W
1
,
q
(
R
N
)
,
u
>
0
in
R
N
,
where
ε
>
0
is a small parameter,
1
<
p
<
q
<
N
,
Δ
r
u
=
div
(
|
∇
u
|
r
-
2
∇
u
)
, with
r
∈
{
p
,
q
}
, is the
r
-Laplacian operator,
V
:
R
N
→
R
is a continuous function satisfying the global Rabinowitz condition, and
f
:
R
→
R
is a continuous function with subcritical growth. Using suitable variational arguments and Ljusternik–Schnirelmann category theory, we investigate the relation between the number of positive solutions and the topology of the set where
V
attains its minimum for small
ε
. |
---|---|
ISSN: | 0044-2275 1420-9039 |
DOI: | 10.1007/s00033-020-01466-7 |