The arbitrary‐order virtual element method for linear elastodynamics models: convergence, stability and dispersion‐dissipation analysis
We design the conforming virtual element method for the numerical approximation of the two‐dimensional elastodynamics problem. We prove stability and convergence of the semidiscrete approximation and derive optimal error estimates under h‐ and p‐refinement in both the energy and the L2 norms. The pe...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2021-02, Vol.122 (4), p.934-971 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We design the conforming virtual element method for the numerical approximation of the two‐dimensional elastodynamics problem. We prove stability and convergence of the semidiscrete approximation and derive optimal error estimates under h‐ and p‐refinement in both the energy and the L2 norms. The performance of the proposed virtual element method is assessed on a set of different computational meshes, including nonconvex cells up to order four in the h‐refinement setting. Exponential convergence is also experimentally observed under p‐refinement. Finally, we present a dispersion‐dissipation analysis for both the semidiscrete and fully discrete schemes, showing that polygonal meshes behave as classical simplicial/quadrilateral grids in terms of dispersion‐dissipation properties. |
---|---|
ISSN: | 0029-5981 1097-0207 |
DOI: | 10.1002/nme.6569 |