A General Synthetic Strategy toward Highly Doped Pyridinic Nitrogen‐Rich Carbons
Doping carbon materials with p‐block elements such as nitrogen is an effective approach to tune electronic properties of the framework and can endow the host's new characters. To date, highly doped carbons with tunable nitrogen speciation are still less explored due to the grand challenge in fa...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-01, Vol.31 (3), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Doping carbon materials with p‐block elements such as nitrogen is an effective approach to tune electronic properties of the framework and can endow the host's new characters. To date, highly doped carbons with tunable nitrogen speciation are still less explored due to the grand challenge in fabrication; for example, the typical synthesis based on the pyrolysis of nitrogen‐containing precursors shows a trade‐off between the total nitrogen content and the carbonization temperature, limiting the value to ≈12 wt% at 1073 K. Herein, intensifying ring opening of cross‐linked polymers through controlled pre‐oxidation followed by conventional pyrolysis is demonstrated as an elegant method to circumvent this challenge. In addition to fine tunability at different nitrogen speciation, this strategy can increase the nitrogen content by two‐ to threefold (maximum ≈22 wt%) and shows general viability in six different N‐bearing (co)polymers. The highly doped pyridinic nitrogen‐rich carbons show i) a remarkable capacity of 879 mAh g−1 at 0.1 A g−1 and excellent cycling performance in lithium ion batteries, and ii) significantly boosted catalytic performance in the selective oxidation of diverse substrates. Therefore, this facile synthetic strategy and the tunability at nitrogen functionalities will greatly broaden the applications of this new class of functional materials.
Highly doped carbons with rich pyridinic nitrogen speciation are facilely fabricated using a general approach coupling controlled pre‐oxidation and subsequent carbonization of various N‐bearing (co)polymers; their novel materials can afford remarkable catalytic performance in the selective oxidation of diverse substrates and outstanding capacity and cycling performance in lithium ion batteries. |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.202006076 |