Polylogarithmic bounds in the nilpotent Freiman theorem

We show that if A is a finite K-approximate subgroup of an s-step nilpotent group then there is a finite normal subgroup $H \subset {A^{{K^{{O_s}(1)}}}$ modulo which ${A^{{O_s}(\mathop {\log }\nolimits^{{O_s}(1)} K)}}$ contains a nilprogression of rank at most ${O_s}(\mathop {\log }\nolimits^{{O_s}(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 2021-01, Vol.170 (1), p.111-127
1. Verfasser: TOINTON, MATTHEW C. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that if A is a finite K-approximate subgroup of an s-step nilpotent group then there is a finite normal subgroup $H \subset {A^{{K^{{O_s}(1)}}}$ modulo which ${A^{{O_s}(\mathop {\log }\nolimits^{{O_s}(1)} K)}}$ contains a nilprogression of rank at most ${O_s}(\mathop {\log }\nolimits^{{O_s}(1)} K)$ and size at least $\exp ( - {O_s}(\mathop {\log }\nolimits^{{O_s}(1)} K))|A|$ . This partially generalises the close-to-optimal bounds obtained in the abelian case by Sanders, and improves the bounds and simplifies the exposition of an earlier result of the author. Combined with results of Breuillard–Green, Breuillard–Green–Tao, Gill–Helfgott–Pyber–Szabó, and the author, this leads to improved rank bounds in Freiman-type theorems in residually nilpotent groups and certain linear groups of bounded degree.
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004119000343