Bi-doped Ceria with Increased Oxygen Vacancy for Enhanced CO2 Photoreduction Performance

Oxygen vacancy plays an important role in promoting CO2 adsorption and reduction on photocatalysts. Bi was heavily doped into ceria, forming a solid solution catalyst Ce1-xBixO2-δ meanwhile maintaining the fluorite structure, to increase the oxygen vacancy concentration. The sample Ce0.6Bi0.4O2-δ sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wu ji cai liao xue bao 2021-01, Vol.36 (1), p.88
Hauptverfasser: Liu, Yaxin, Wang, Min, Shen, Meng, Wang, Qiang, Zhang, Lingxia
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oxygen vacancy plays an important role in promoting CO2 adsorption and reduction on photocatalysts. Bi was heavily doped into ceria, forming a solid solution catalyst Ce1-xBixO2-δ meanwhile maintaining the fluorite structure, to increase the oxygen vacancy concentration. The sample Ce0.6Bi0.4O2-δ showed the highest photocatalytic activity with a CO yield of ~4.6 times that of the pristine ceria nanorods. Bi was homogeneously dispersed into the fluorite ceria which was confirmed by XRD and EDX elemental mapping. It has been evidenced by the results of Raman and XPS that Bi introduction boosts the concentration of oxygen vacancy in the solid solution that can facilitate the adsorption/activation of carbonate and bicarbonate intermediates on its surface according to in-situ FT-IR.
ISSN:1000-324X
DOI:10.15541/jim20200142