ECOL: Early Detection of COVID Lies Using Content, Prior Knowledge and Source Information

Social media platforms are vulnerable to fake news dissemination, which causes negative consequences such as panic and wrong medication in the healthcare domain. Therefore, it is important to automatically detect fake news in an early stage before they get widely spread. This paper analyzes the impa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-01
Hauptverfasser: Ipek Baris, Boukhers, Zeyd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Social media platforms are vulnerable to fake news dissemination, which causes negative consequences such as panic and wrong medication in the healthcare domain. Therefore, it is important to automatically detect fake news in an early stage before they get widely spread. This paper analyzes the impact of incorporating content information, prior knowledge, and credibility of sources into models for the early detection of fake news. We propose a framework modeling those features by using BERT language model and external sources, namely Simple English Wikipedia and source reliability tags. The conducted experiments on CONSTRAINT datasets demonstrated the benefit of integrating these features for the early detection of fake news in the healthcare domain.
ISSN:2331-8422