Efficient quantum circuit synthesis for SAT-oracle with limited ancillary qubit
How to implement quantum oracle with limited resources raises concerns these days. We design two ancilla-adjustable and efficient algorithms to synthesize SAT-oracle, the key component in solving SAT problems. The previous work takes 2m-1 ancillary qubits and O(m) elementary gates to synthesize an m...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-06 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | How to implement quantum oracle with limited resources raises concerns these days. We design two ancilla-adjustable and efficient algorithms to synthesize SAT-oracle, the key component in solving SAT problems. The previous work takes 2m-1 ancillary qubits and O(m) elementary gates to synthesize an m clauses oracle. The first algorithm reduces the number of ancillary qubits to 2\sqrt{m}, with at most an eightfold increase in circuit size. The number of ancillary qubits can be further reduced to 3 with a quadratic increase in circuit size. The second algorithm aims to reduce the circuit depth. By leveraging of the second algorithm, the circuit depth can be reduced to O(log m) with m ancillary qubits. |
---|---|
ISSN: | 2331-8422 |