GEM: Online Globally Consistent Dense Elevation Mapping for Unstructured Terrain
Online dense mapping gives a representation of the unstructured terrain, which is indispensable for safe robotic motion planning. In this article, we propose such an elevation mapping system, namely GEM, to generate a dense local elevation map in constant real time for fast responsive local planning...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2021, Vol.70, p.1-13 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 70 |
creator | Pan, Yiyuan Xu, Xuecheng Ding, Xiaqing Huang, Shoudong Wang, Yue Xiong, Rong |
description | Online dense mapping gives a representation of the unstructured terrain, which is indispensable for safe robotic motion planning. In this article, we propose such an elevation mapping system, namely GEM, to generate a dense local elevation map in constant real time for fast responsive local planning, and maintain a globally consistent dense map for path routing at the same time. We model the global elevation map as a collection of submaps. When the trajectory estimation of the robot is corrected by simultaneous localization and mapping (SLAM), only relative poses between submaps are updated without rebuilding the submap. As a result, this deformable global dense map representation is able to keep the global consistency online. Besides, we accelerate the local mapping by integrating traversability analysis into the mapping system to save the computation cost by obstacle awareness. The system is implemented by CPU-GPU coordinated processing to guarantee constant real-time performance for in-time handling of dynamic obstacles. Substantial experimental results on both simulated and real-world data set validate the efficiency and effectiveness of GEM. |
doi_str_mv | 10.1109/TIM.2020.3044338 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2478142681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9293017</ieee_id><sourcerecordid>2478142681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-4b29ca8658bcea1117422e7d34e2a8fbc70651851461622d49220999204c676e3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsD72gpsB16l3HpmHO6m1Flrqol0Pk_RGUuIkzqRC_70pLa7O5jvnwEfIA4MxY2Cf1_PlmAOHsQAphTAXZMTyXGdWKX5JRgDMZFbm6prcpLQDAK2kHpHP2XT5QlehqQPSWdMWvmkOdNKGVKceQ0_fMCSk0wZ_fV-3gS5919Xhi1ZtpJuQ-rgv-33ELV1jjL4Od-Sq8k3C-3Peks37dD35yBar2XzyushKIUSfyYLb0huVm6JEzxjTknPUWyGRe1MVpQaVM5MzqZjifCst52Ct5SBLpRWKW_J02u1i-7PH1Ltdu49huHRcasMkV4YNFJyoMrYpRaxcF-tvHw-OgTt6c4M3d_Tmzt6GyuOpUiPiP265FcC0-AMuXmc4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478142681</pqid></control><display><type>article</type><title>GEM: Online Globally Consistent Dense Elevation Mapping for Unstructured Terrain</title><source>IEEE Electronic Library (IEL)</source><creator>Pan, Yiyuan ; Xu, Xuecheng ; Ding, Xiaqing ; Huang, Shoudong ; Wang, Yue ; Xiong, Rong</creator><creatorcontrib>Pan, Yiyuan ; Xu, Xuecheng ; Ding, Xiaqing ; Huang, Shoudong ; Wang, Yue ; Xiong, Rong</creatorcontrib><description>Online dense mapping gives a representation of the unstructured terrain, which is indispensable for safe robotic motion planning. In this article, we propose such an elevation mapping system, namely GEM, to generate a dense local elevation map in constant real time for fast responsive local planning, and maintain a globally consistent dense map for path routing at the same time. We model the global elevation map as a collection of submaps. When the trajectory estimation of the robot is corrected by simultaneous localization and mapping (SLAM), only relative poses between submaps are updated without rebuilding the submap. As a result, this deformable global dense map representation is able to keep the global consistency online. Besides, we accelerate the local mapping by integrating traversability analysis into the mapping system to save the computation cost by obstacle awareness. The system is implemented by CPU-GPU coordinated processing to guarantee constant real-time performance for in-time handling of dynamic obstacles. Substantial experimental results on both simulated and real-world data set validate the efficiency and effectiveness of GEM.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2020.3044338</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Barriers ; Consistency ; Cost analysis ; Elevation ; elevation mapping ; Estimation ; Formability ; Laser radar ; Motion planning ; Planning ; Real time ; Real-time systems ; Representations ; scalability ; Simultaneous localization and mapping ; Terrain ; Three-dimensional displays ; Trajectory ; Trajectory analysis</subject><ispartof>IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-4b29ca8658bcea1117422e7d34e2a8fbc70651851461622d49220999204c676e3</citedby><cites>FETCH-LOGICAL-c333t-4b29ca8658bcea1117422e7d34e2a8fbc70651851461622d49220999204c676e3</cites><orcidid>0000-0002-0981-935X ; 0000-0002-0762-6714 ; 0000-0001-7802-0130 ; 0000-0001-9318-9014 ; 0000-0002-6124-4178 ; 0000-0002-2875-0503</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9293017$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9293017$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pan, Yiyuan</creatorcontrib><creatorcontrib>Xu, Xuecheng</creatorcontrib><creatorcontrib>Ding, Xiaqing</creatorcontrib><creatorcontrib>Huang, Shoudong</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Xiong, Rong</creatorcontrib><title>GEM: Online Globally Consistent Dense Elevation Mapping for Unstructured Terrain</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Online dense mapping gives a representation of the unstructured terrain, which is indispensable for safe robotic motion planning. In this article, we propose such an elevation mapping system, namely GEM, to generate a dense local elevation map in constant real time for fast responsive local planning, and maintain a globally consistent dense map for path routing at the same time. We model the global elevation map as a collection of submaps. When the trajectory estimation of the robot is corrected by simultaneous localization and mapping (SLAM), only relative poses between submaps are updated without rebuilding the submap. As a result, this deformable global dense map representation is able to keep the global consistency online. Besides, we accelerate the local mapping by integrating traversability analysis into the mapping system to save the computation cost by obstacle awareness. The system is implemented by CPU-GPU coordinated processing to guarantee constant real-time performance for in-time handling of dynamic obstacles. Substantial experimental results on both simulated and real-world data set validate the efficiency and effectiveness of GEM.</description><subject>Barriers</subject><subject>Consistency</subject><subject>Cost analysis</subject><subject>Elevation</subject><subject>elevation mapping</subject><subject>Estimation</subject><subject>Formability</subject><subject>Laser radar</subject><subject>Motion planning</subject><subject>Planning</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Representations</subject><subject>scalability</subject><subject>Simultaneous localization and mapping</subject><subject>Terrain</subject><subject>Three-dimensional displays</subject><subject>Trajectory</subject><subject>Trajectory analysis</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AUhQdRsD72gpsB16l3HpmHO6m1Flrqol0Pk_RGUuIkzqRC_70pLa7O5jvnwEfIA4MxY2Cf1_PlmAOHsQAphTAXZMTyXGdWKX5JRgDMZFbm6prcpLQDAK2kHpHP2XT5QlehqQPSWdMWvmkOdNKGVKceQ0_fMCSk0wZ_fV-3gS5919Xhi1ZtpJuQ-rgv-33ELV1jjL4Od-Sq8k3C-3Peks37dD35yBar2XzyushKIUSfyYLb0huVm6JEzxjTknPUWyGRe1MVpQaVM5MzqZjifCst52Ct5SBLpRWKW_J02u1i-7PH1Ltdu49huHRcasMkV4YNFJyoMrYpRaxcF-tvHw-OgTt6c4M3d_Tmzt6GyuOpUiPiP265FcC0-AMuXmc4</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Pan, Yiyuan</creator><creator>Xu, Xuecheng</creator><creator>Ding, Xiaqing</creator><creator>Huang, Shoudong</creator><creator>Wang, Yue</creator><creator>Xiong, Rong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0981-935X</orcidid><orcidid>https://orcid.org/0000-0002-0762-6714</orcidid><orcidid>https://orcid.org/0000-0001-7802-0130</orcidid><orcidid>https://orcid.org/0000-0001-9318-9014</orcidid><orcidid>https://orcid.org/0000-0002-6124-4178</orcidid><orcidid>https://orcid.org/0000-0002-2875-0503</orcidid></search><sort><creationdate>2021</creationdate><title>GEM: Online Globally Consistent Dense Elevation Mapping for Unstructured Terrain</title><author>Pan, Yiyuan ; Xu, Xuecheng ; Ding, Xiaqing ; Huang, Shoudong ; Wang, Yue ; Xiong, Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-4b29ca8658bcea1117422e7d34e2a8fbc70651851461622d49220999204c676e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Barriers</topic><topic>Consistency</topic><topic>Cost analysis</topic><topic>Elevation</topic><topic>elevation mapping</topic><topic>Estimation</topic><topic>Formability</topic><topic>Laser radar</topic><topic>Motion planning</topic><topic>Planning</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Representations</topic><topic>scalability</topic><topic>Simultaneous localization and mapping</topic><topic>Terrain</topic><topic>Three-dimensional displays</topic><topic>Trajectory</topic><topic>Trajectory analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Yiyuan</creatorcontrib><creatorcontrib>Xu, Xuecheng</creatorcontrib><creatorcontrib>Ding, Xiaqing</creatorcontrib><creatorcontrib>Huang, Shoudong</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Xiong, Rong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pan, Yiyuan</au><au>Xu, Xuecheng</au><au>Ding, Xiaqing</au><au>Huang, Shoudong</au><au>Wang, Yue</au><au>Xiong, Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GEM: Online Globally Consistent Dense Elevation Mapping for Unstructured Terrain</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2021</date><risdate>2021</risdate><volume>70</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Online dense mapping gives a representation of the unstructured terrain, which is indispensable for safe robotic motion planning. In this article, we propose such an elevation mapping system, namely GEM, to generate a dense local elevation map in constant real time for fast responsive local planning, and maintain a globally consistent dense map for path routing at the same time. We model the global elevation map as a collection of submaps. When the trajectory estimation of the robot is corrected by simultaneous localization and mapping (SLAM), only relative poses between submaps are updated without rebuilding the submap. As a result, this deformable global dense map representation is able to keep the global consistency online. Besides, we accelerate the local mapping by integrating traversability analysis into the mapping system to save the computation cost by obstacle awareness. The system is implemented by CPU-GPU coordinated processing to guarantee constant real-time performance for in-time handling of dynamic obstacles. Substantial experimental results on both simulated and real-world data set validate the efficiency and effectiveness of GEM.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2020.3044338</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0981-935X</orcidid><orcidid>https://orcid.org/0000-0002-0762-6714</orcidid><orcidid>https://orcid.org/0000-0001-7802-0130</orcidid><orcidid>https://orcid.org/0000-0001-9318-9014</orcidid><orcidid>https://orcid.org/0000-0002-6124-4178</orcidid><orcidid>https://orcid.org/0000-0002-2875-0503</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-13 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_proquest_journals_2478142681 |
source | IEEE Electronic Library (IEL) |
subjects | Barriers Consistency Cost analysis Elevation elevation mapping Estimation Formability Laser radar Motion planning Planning Real time Real-time systems Representations scalability Simultaneous localization and mapping Terrain Three-dimensional displays Trajectory Trajectory analysis |
title | GEM: Online Globally Consistent Dense Elevation Mapping for Unstructured Terrain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A33%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GEM:%20Online%20Globally%20Consistent%20Dense%20Elevation%20Mapping%20for%20Unstructured%20Terrain&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Pan,%20Yiyuan&rft.date=2021&rft.volume=70&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2020.3044338&rft_dat=%3Cproquest_RIE%3E2478142681%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478142681&rft_id=info:pmid/&rft_ieee_id=9293017&rfr_iscdi=true |