GEM: Online Globally Consistent Dense Elevation Mapping for Unstructured Terrain

Online dense mapping gives a representation of the unstructured terrain, which is indispensable for safe robotic motion planning. In this article, we propose such an elevation mapping system, namely GEM, to generate a dense local elevation map in constant real time for fast responsive local planning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2021, Vol.70, p.1-13
Hauptverfasser: Pan, Yiyuan, Xu, Xuecheng, Ding, Xiaqing, Huang, Shoudong, Wang, Yue, Xiong, Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 70
creator Pan, Yiyuan
Xu, Xuecheng
Ding, Xiaqing
Huang, Shoudong
Wang, Yue
Xiong, Rong
description Online dense mapping gives a representation of the unstructured terrain, which is indispensable for safe robotic motion planning. In this article, we propose such an elevation mapping system, namely GEM, to generate a dense local elevation map in constant real time for fast responsive local planning, and maintain a globally consistent dense map for path routing at the same time. We model the global elevation map as a collection of submaps. When the trajectory estimation of the robot is corrected by simultaneous localization and mapping (SLAM), only relative poses between submaps are updated without rebuilding the submap. As a result, this deformable global dense map representation is able to keep the global consistency online. Besides, we accelerate the local mapping by integrating traversability analysis into the mapping system to save the computation cost by obstacle awareness. The system is implemented by CPU-GPU coordinated processing to guarantee constant real-time performance for in-time handling of dynamic obstacles. Substantial experimental results on both simulated and real-world data set validate the efficiency and effectiveness of GEM.
doi_str_mv 10.1109/TIM.2020.3044338
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2478142681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9293017</ieee_id><sourcerecordid>2478142681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-4b29ca8658bcea1117422e7d34e2a8fbc70651851461622d49220999204c676e3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsD72gpsB16l3HpmHO6m1Flrqol0Pk_RGUuIkzqRC_70pLa7O5jvnwEfIA4MxY2Cf1_PlmAOHsQAphTAXZMTyXGdWKX5JRgDMZFbm6prcpLQDAK2kHpHP2XT5QlehqQPSWdMWvmkOdNKGVKceQ0_fMCSk0wZ_fV-3gS5919Xhi1ZtpJuQ-rgv-33ELV1jjL4Od-Sq8k3C-3Peks37dD35yBar2XzyushKIUSfyYLb0huVm6JEzxjTknPUWyGRe1MVpQaVM5MzqZjifCst52Ct5SBLpRWKW_J02u1i-7PH1Ltdu49huHRcasMkV4YNFJyoMrYpRaxcF-tvHw-OgTt6c4M3d_Tmzt6GyuOpUiPiP265FcC0-AMuXmc4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478142681</pqid></control><display><type>article</type><title>GEM: Online Globally Consistent Dense Elevation Mapping for Unstructured Terrain</title><source>IEEE Electronic Library (IEL)</source><creator>Pan, Yiyuan ; Xu, Xuecheng ; Ding, Xiaqing ; Huang, Shoudong ; Wang, Yue ; Xiong, Rong</creator><creatorcontrib>Pan, Yiyuan ; Xu, Xuecheng ; Ding, Xiaqing ; Huang, Shoudong ; Wang, Yue ; Xiong, Rong</creatorcontrib><description>Online dense mapping gives a representation of the unstructured terrain, which is indispensable for safe robotic motion planning. In this article, we propose such an elevation mapping system, namely GEM, to generate a dense local elevation map in constant real time for fast responsive local planning, and maintain a globally consistent dense map for path routing at the same time. We model the global elevation map as a collection of submaps. When the trajectory estimation of the robot is corrected by simultaneous localization and mapping (SLAM), only relative poses between submaps are updated without rebuilding the submap. As a result, this deformable global dense map representation is able to keep the global consistency online. Besides, we accelerate the local mapping by integrating traversability analysis into the mapping system to save the computation cost by obstacle awareness. The system is implemented by CPU-GPU coordinated processing to guarantee constant real-time performance for in-time handling of dynamic obstacles. Substantial experimental results on both simulated and real-world data set validate the efficiency and effectiveness of GEM.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2020.3044338</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Barriers ; Consistency ; Cost analysis ; Elevation ; elevation mapping ; Estimation ; Formability ; Laser radar ; Motion planning ; Planning ; Real time ; Real-time systems ; Representations ; scalability ; Simultaneous localization and mapping ; Terrain ; Three-dimensional displays ; Trajectory ; Trajectory analysis</subject><ispartof>IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-4b29ca8658bcea1117422e7d34e2a8fbc70651851461622d49220999204c676e3</citedby><cites>FETCH-LOGICAL-c333t-4b29ca8658bcea1117422e7d34e2a8fbc70651851461622d49220999204c676e3</cites><orcidid>0000-0002-0981-935X ; 0000-0002-0762-6714 ; 0000-0001-7802-0130 ; 0000-0001-9318-9014 ; 0000-0002-6124-4178 ; 0000-0002-2875-0503</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9293017$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9293017$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pan, Yiyuan</creatorcontrib><creatorcontrib>Xu, Xuecheng</creatorcontrib><creatorcontrib>Ding, Xiaqing</creatorcontrib><creatorcontrib>Huang, Shoudong</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Xiong, Rong</creatorcontrib><title>GEM: Online Globally Consistent Dense Elevation Mapping for Unstructured Terrain</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Online dense mapping gives a representation of the unstructured terrain, which is indispensable for safe robotic motion planning. In this article, we propose such an elevation mapping system, namely GEM, to generate a dense local elevation map in constant real time for fast responsive local planning, and maintain a globally consistent dense map for path routing at the same time. We model the global elevation map as a collection of submaps. When the trajectory estimation of the robot is corrected by simultaneous localization and mapping (SLAM), only relative poses between submaps are updated without rebuilding the submap. As a result, this deformable global dense map representation is able to keep the global consistency online. Besides, we accelerate the local mapping by integrating traversability analysis into the mapping system to save the computation cost by obstacle awareness. The system is implemented by CPU-GPU coordinated processing to guarantee constant real-time performance for in-time handling of dynamic obstacles. Substantial experimental results on both simulated and real-world data set validate the efficiency and effectiveness of GEM.</description><subject>Barriers</subject><subject>Consistency</subject><subject>Cost analysis</subject><subject>Elevation</subject><subject>elevation mapping</subject><subject>Estimation</subject><subject>Formability</subject><subject>Laser radar</subject><subject>Motion planning</subject><subject>Planning</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Representations</subject><subject>scalability</subject><subject>Simultaneous localization and mapping</subject><subject>Terrain</subject><subject>Three-dimensional displays</subject><subject>Trajectory</subject><subject>Trajectory analysis</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AUhQdRsD72gpsB16l3HpmHO6m1Flrqol0Pk_RGUuIkzqRC_70pLa7O5jvnwEfIA4MxY2Cf1_PlmAOHsQAphTAXZMTyXGdWKX5JRgDMZFbm6prcpLQDAK2kHpHP2XT5QlehqQPSWdMWvmkOdNKGVKceQ0_fMCSk0wZ_fV-3gS5919Xhi1ZtpJuQ-rgv-33ELV1jjL4Od-Sq8k3C-3Peks37dD35yBar2XzyushKIUSfyYLb0huVm6JEzxjTknPUWyGRe1MVpQaVM5MzqZjifCst52Ct5SBLpRWKW_J02u1i-7PH1Ltdu49huHRcasMkV4YNFJyoMrYpRaxcF-tvHw-OgTt6c4M3d_Tmzt6GyuOpUiPiP265FcC0-AMuXmc4</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Pan, Yiyuan</creator><creator>Xu, Xuecheng</creator><creator>Ding, Xiaqing</creator><creator>Huang, Shoudong</creator><creator>Wang, Yue</creator><creator>Xiong, Rong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0981-935X</orcidid><orcidid>https://orcid.org/0000-0002-0762-6714</orcidid><orcidid>https://orcid.org/0000-0001-7802-0130</orcidid><orcidid>https://orcid.org/0000-0001-9318-9014</orcidid><orcidid>https://orcid.org/0000-0002-6124-4178</orcidid><orcidid>https://orcid.org/0000-0002-2875-0503</orcidid></search><sort><creationdate>2021</creationdate><title>GEM: Online Globally Consistent Dense Elevation Mapping for Unstructured Terrain</title><author>Pan, Yiyuan ; Xu, Xuecheng ; Ding, Xiaqing ; Huang, Shoudong ; Wang, Yue ; Xiong, Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-4b29ca8658bcea1117422e7d34e2a8fbc70651851461622d49220999204c676e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Barriers</topic><topic>Consistency</topic><topic>Cost analysis</topic><topic>Elevation</topic><topic>elevation mapping</topic><topic>Estimation</topic><topic>Formability</topic><topic>Laser radar</topic><topic>Motion planning</topic><topic>Planning</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Representations</topic><topic>scalability</topic><topic>Simultaneous localization and mapping</topic><topic>Terrain</topic><topic>Three-dimensional displays</topic><topic>Trajectory</topic><topic>Trajectory analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Yiyuan</creatorcontrib><creatorcontrib>Xu, Xuecheng</creatorcontrib><creatorcontrib>Ding, Xiaqing</creatorcontrib><creatorcontrib>Huang, Shoudong</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Xiong, Rong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pan, Yiyuan</au><au>Xu, Xuecheng</au><au>Ding, Xiaqing</au><au>Huang, Shoudong</au><au>Wang, Yue</au><au>Xiong, Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GEM: Online Globally Consistent Dense Elevation Mapping for Unstructured Terrain</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2021</date><risdate>2021</risdate><volume>70</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Online dense mapping gives a representation of the unstructured terrain, which is indispensable for safe robotic motion planning. In this article, we propose such an elevation mapping system, namely GEM, to generate a dense local elevation map in constant real time for fast responsive local planning, and maintain a globally consistent dense map for path routing at the same time. We model the global elevation map as a collection of submaps. When the trajectory estimation of the robot is corrected by simultaneous localization and mapping (SLAM), only relative poses between submaps are updated without rebuilding the submap. As a result, this deformable global dense map representation is able to keep the global consistency online. Besides, we accelerate the local mapping by integrating traversability analysis into the mapping system to save the computation cost by obstacle awareness. The system is implemented by CPU-GPU coordinated processing to guarantee constant real-time performance for in-time handling of dynamic obstacles. Substantial experimental results on both simulated and real-world data set validate the efficiency and effectiveness of GEM.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2020.3044338</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0981-935X</orcidid><orcidid>https://orcid.org/0000-0002-0762-6714</orcidid><orcidid>https://orcid.org/0000-0001-7802-0130</orcidid><orcidid>https://orcid.org/0000-0001-9318-9014</orcidid><orcidid>https://orcid.org/0000-0002-6124-4178</orcidid><orcidid>https://orcid.org/0000-0002-2875-0503</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-13
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_journals_2478142681
source IEEE Electronic Library (IEL)
subjects Barriers
Consistency
Cost analysis
Elevation
elevation mapping
Estimation
Formability
Laser radar
Motion planning
Planning
Real time
Real-time systems
Representations
scalability
Simultaneous localization and mapping
Terrain
Three-dimensional displays
Trajectory
Trajectory analysis
title GEM: Online Globally Consistent Dense Elevation Mapping for Unstructured Terrain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A33%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GEM:%20Online%20Globally%20Consistent%20Dense%20Elevation%20Mapping%20for%20Unstructured%20Terrain&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Pan,%20Yiyuan&rft.date=2021&rft.volume=70&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2020.3044338&rft_dat=%3Cproquest_RIE%3E2478142681%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478142681&rft_id=info:pmid/&rft_ieee_id=9293017&rfr_iscdi=true