On the impact of the heat transfer modelling approach on the prediction of EU-DEMO WCLL breeding blanket thermal performances

The Water-Cooled Lithium-Lead Breeding Blanket is a key component of a fusion power plant, in charge of ensure Tritium production, shield Vacuum Vessel and magnets and remove the heat power deposited by radiation and particles arising from plasma. The last function is fulfilled by First Wall and Bre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fusion engineering and design 2020-12, Vol.161, p.112051, Article 112051
Hauptverfasser: Edemetti, Francesco, Martelli, Emanuela, Del Nevo, Alessandro, Giannetti, Fabio, Arena, Pietro, Forte, Ruggero, Di Maio, Pietro Alessandro, Caruso, Gianfranco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Water-Cooled Lithium-Lead Breeding Blanket is a key component of a fusion power plant, in charge of ensure Tritium production, shield Vacuum Vessel and magnets and remove the heat power deposited by radiation and particles arising from plasma. The last function is fulfilled by First Wall and Breeding Zone independent cooling systems. Several layouts of BZ coolant system have been investigated in the last years to identify a configuration that might guarantee EUROFER temperature below the limit (550 °C) and good thermal-hydraulic performances (i.e. water outlet temperature of 328 °C). A research activity is conducted to study and compare different modelling approaches to simulate the heat transfer within the BZ liquid metal, assessing their impact on the numerical prediction of the WCLL blanket thermal performances. An approach will rely on the simulation of convective and diffusive heat transfer processes taking place within the liquid metal by means of a CFD tool based on the Finite Volume Method. Conversely, the other approach will roughly assume a pure diffusive heat transfer mechanism within the breeder, due to the very low velocities envisaged for its flow field. In this case the heat transfer performances will be preferably assessed by means of a commercial code based on the Finite Element Method. The analyses have been carried out with reference to the so called “WCLL BB 2018 V0.6″ equatorial cell. Advantages and issues from the thermal-hydraulic point of view are identified, the impact of the imposed boundary conditions and heat transfer properties, with the implemented correlations, on the respective results is critically discussed.
ISSN:0920-3796
1873-7196
DOI:10.1016/j.fusengdes.2020.112051