On the Chromatic Numbers of Random Hypergraphs

The asymptotic behavior of the chromatic number of the binomial random hypergraph is studied in the case when is fixed, n tends to infinity, and p = p ( n ) is a function. If p = p ( n ) does not decrease too slowly, we prove that the chromatic number of is concentrated in two or three consecutive v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. Mathematics 2020-09, Vol.102 (2), p.380-383
Hauptverfasser: Demidovich, Yu. A., Shabanov, D. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The asymptotic behavior of the chromatic number of the binomial random hypergraph is studied in the case when is fixed, n tends to infinity, and p = p ( n ) is a function. If p = p ( n ) does not decrease too slowly, we prove that the chromatic number of is concentrated in two or three consecutive values, which can be found explicitly as functions of n , p , and k .
ISSN:1064-5624
1531-8362
DOI:10.1134/S1064562420050312