Graphene-family materials in electrochemical aptasensors

The study of graphene-based carbon nanocomposites has remarkably increased in recent years. Functionalized graphene-based nanostructures, including graphene oxide and reduced graphene oxide, have great potential as new innovative electrode materials in the fabrication of novel electrochemical sensor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2021, Vol.413 (3), p.673-699
Hauptverfasser: Amiri, Mandana, Nekoueian, Khadijeh, Saberi, Reyhaneh Sadat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The study of graphene-based carbon nanocomposites has remarkably increased in recent years. Functionalized graphene-based nanostructures, including graphene oxide and reduced graphene oxide, have great potential as new innovative electrode materials in the fabrication of novel electrochemical sensors. Electrochemical sensors based on aptamers attracted great attention because of their high sensitivity and selectivity, and simple instrumentation, as well as low production cost. Aptamers as a potent alternative to antibodies are functional nucleic acids with a high tendency to specific analytes. Electrochemical aptasensors show specific recognition ability for a wide range of analytes. Although aptamers are selected in vitro in contrast to antibodies, they are interesting due to advantages like high stability, easy chemical modifications, and the potential to be employed in nanostructured device fabrication or electrochemical sensing devices. Recently, new nanomaterials have shown a significant impact on the production of electrochemical sensors with high efficiency and performance. This review aims to give an outline of electrochemical aptasensors based on the graphene family materials and discuss the detection mechanism in this type of aptasensors. The present review summarizes some of the recent achievements in graphene-based aptasensors and includes their recent electroanalytical applications. Graphical Abstract Graphical Abstract
ISSN:1618-2642
1618-2650
DOI:10.1007/s00216-020-02915-y