A cross-platform approach identifies genetic regulators of human metabolism and health
In cross-platform analyses of 174 metabolites, we identify 499 associations ( P
Gespeichert in:
Veröffentlicht in: | Nature genetics 2021-01, Vol.53 (1), p.54-64 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 64 |
---|---|
container_issue | 1 |
container_start_page | 54 |
container_title | Nature genetics |
container_volume | 53 |
creator | Lotta, Luca A. Pietzner, Maik Stewart, Isobel D. Wittemans, Laura B. L. Li, Chen Bonelli, Roberto Raffler, Johannes Biggs, Emma K. Oliver-Williams, Clare Auyeung, Victoria P. W. Luan, Jian’an Wheeler, Eleanor Paige, Ellie Surendran, Praveen Michelotti, Gregory A. Scott, Robert A. Burgess, Stephen Zuber, Verena Sanderson, Eleanor Koulman, Albert Imamura, Fumiaki Forouhi, Nita G. Khaw, Kay-Tee Griffin, Julian L. Wood, Angela M. Kastenmüller, Gabi Danesh, John Butterworth, Adam S. Gribble, Fiona M. Reimann, Frank Bahlo, Melanie Fauman, Eric Wareham, Nicholas J. Langenberg, Claudia |
description | In cross-platform analyses of 174 metabolites, we identify 499 associations (
P
|
doi_str_mv | 10.1038/s41588-020-00751-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2477285830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650176615</galeid><sourcerecordid>A650176615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-944517e2b4894e20a20063d06ce298d09d7ae8001fb2576db2d35b33f3ef6e363</originalsourceid><addsrcrecordid>eNqNkU1rFTEUhgex2Fr9Ay4k4KqLaU8-J3d5KVoLhUKr3YbM5GRuynxckwzUf2_aWy0XRCSLhOR5Tw7nqaoPFE4pcH2WBJVa18CgBmgkreWr6ohKoWraUP26nEHRWgBXh9XblO4BqBCg31SHnAsqpNBH1d2adHFOqd4ONvs5jsRut3G23YYEh1MOPmAiPU6YQ0ci9kvh5pjI7MlmGe1ERsy2nYeQSnRyZIN2yJt31YG3Q8L3z_tx9f3L52_nX-ur64vL8_VV3SkGuV4JIWmDrBV6JZCBZQCKO1AdspV2sHKNRV369i2TjXItc1y2nHuOXiFX_Lj6tKtbev6xYMrmfl7iVL40TDQN01JzeKF6O6AJk59ztN0YUmfWSgJtlKKyUKd_ocpyOIZuntCHcr8XONkLFCbjQ-7tkpK5vL35f_b6bp9lO_bJTERvtjGMNv40FMyjebMzb4p582TePIY-Pk9iaUd0fyK_VReA74BUnqYe48uo_lH2F6aetSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477285830</pqid></control><display><type>article</type><title>A cross-platform approach identifies genetic regulators of human metabolism and health</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Lotta, Luca A. ; Pietzner, Maik ; Stewart, Isobel D. ; Wittemans, Laura B. L. ; Li, Chen ; Bonelli, Roberto ; Raffler, Johannes ; Biggs, Emma K. ; Oliver-Williams, Clare ; Auyeung, Victoria P. W. ; Luan, Jian’an ; Wheeler, Eleanor ; Paige, Ellie ; Surendran, Praveen ; Michelotti, Gregory A. ; Scott, Robert A. ; Burgess, Stephen ; Zuber, Verena ; Sanderson, Eleanor ; Koulman, Albert ; Imamura, Fumiaki ; Forouhi, Nita G. ; Khaw, Kay-Tee ; Griffin, Julian L. ; Wood, Angela M. ; Kastenmüller, Gabi ; Danesh, John ; Butterworth, Adam S. ; Gribble, Fiona M. ; Reimann, Frank ; Bahlo, Melanie ; Fauman, Eric ; Wareham, Nicholas J. ; Langenberg, Claudia</creator><creatorcontrib>Lotta, Luca A. ; Pietzner, Maik ; Stewart, Isobel D. ; Wittemans, Laura B. L. ; Li, Chen ; Bonelli, Roberto ; Raffler, Johannes ; Biggs, Emma K. ; Oliver-Williams, Clare ; Auyeung, Victoria P. W. ; Luan, Jian’an ; Wheeler, Eleanor ; Paige, Ellie ; Surendran, Praveen ; Michelotti, Gregory A. ; Scott, Robert A. ; Burgess, Stephen ; Zuber, Verena ; Sanderson, Eleanor ; Koulman, Albert ; Imamura, Fumiaki ; Forouhi, Nita G. ; Khaw, Kay-Tee ; Griffin, Julian L. ; Wood, Angela M. ; Kastenmüller, Gabi ; Danesh, John ; Butterworth, Adam S. ; Gribble, Fiona M. ; Reimann, Frank ; Bahlo, Melanie ; Fauman, Eric ; Wareham, Nicholas J. ; Langenberg, Claudia ; MacTel Consortium</creatorcontrib><description>In cross-platform analyses of 174 metabolites, we identify 499 associations (
P
< 4.9 × 10
−10
) characterized by pleiotropy, allelic heterogeneity, large and nonlinear effects and enrichment for nonsynonymous variation. We identify a signal at
GLP2R
(p.Asp470Asn) shared among higher citrulline levels, body mass index, fasting glucose-dependent insulinotropic peptide and type 2 diabetes, with β-arrestin signaling as the underlying mechanism. Genetically higher serine levels are shown to reduce the likelihood (by 95%) and predict development of macular telangiectasia type 2, a rare degenerative retinal disease. Integration of genomic and small molecule data across platforms enables the discovery of regulators of human metabolism and translation into clinical insights.
A large-scale genome-wide meta-analysis conducted across different platforms identifies genetic loci regulating levels of circulating metabolites.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-020-00751-5</identifier><identifier>PMID: 33414548</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>45 ; 45/43 ; 631/208/205 ; 692/308/575 ; Agriculture ; Animal Genetics and Genomics ; Arrestin ; Biomedical and Life Sciences ; Biomedicine ; Body mass index ; Body size ; Cancer Research ; Citrulline ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - genetics ; Eye Diseases - genetics ; Gene Frequency - genetics ; Gene Function ; Gene loci ; Genetic aspects ; Genetic Loci ; Genetic Pleiotropy ; Genetic regulation ; Genome, Human ; Genomes ; Glucagon-Like Peptide-2 Receptor - genetics ; Glycine - metabolism ; Health ; Health aspects ; Heterogeneity ; Human Genetics ; Humans ; Linear Models ; Mendelian Randomization Analysis ; Metabolism ; Metabolism - genetics ; Metabolism, Inborn Errors - genetics ; Metabolites ; Metabolome - genetics ; Mutation, Missense - genetics ; Phenotype ; Pleiotropy ; Polymorphism, Single Nucleotide - genetics ; Principal components analysis ; Regulators ; Retinal Telangiectasis - genetics ; Sample Size ; Serine ; Serine - metabolism</subject><ispartof>Nature genetics, 2021-01, Vol.53 (1), p.54-64</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-944517e2b4894e20a20063d06ce298d09d7ae8001fb2576db2d35b33f3ef6e363</citedby><cites>FETCH-LOGICAL-c620t-944517e2b4894e20a20063d06ce298d09d7ae8001fb2576db2d35b33f3ef6e363</cites><orcidid>0000-0003-2495-4020 ; 0000-0001-5188-5775 ; 0000-0001-9399-6377 ; 0000-0001-9827-1877 ; 0000-0002-6915-9015 ; 0000-0003-0855-9872 ; 0000-0002-2368-7322 ; 0000-0002-6841-8396 ; 0000-0001-9998-051X ; 0000-0001-5132-0774 ; 0000-0002-9739-0249 ; 0000-0002-8616-6444 ; 0000-0001-5365-8760 ; 0000-0003-1422-2993 ; 0000-0002-0823-3963 ; 0000-0003-3634-3016 ; 0000-0002-5017-7344 ; 0000-0002-5041-248X ; 0000-0003-3137-6337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41588-020-00751-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41588-020-00751-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33414548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lotta, Luca A.</creatorcontrib><creatorcontrib>Pietzner, Maik</creatorcontrib><creatorcontrib>Stewart, Isobel D.</creatorcontrib><creatorcontrib>Wittemans, Laura B. L.</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Bonelli, Roberto</creatorcontrib><creatorcontrib>Raffler, Johannes</creatorcontrib><creatorcontrib>Biggs, Emma K.</creatorcontrib><creatorcontrib>Oliver-Williams, Clare</creatorcontrib><creatorcontrib>Auyeung, Victoria P. W.</creatorcontrib><creatorcontrib>Luan, Jian’an</creatorcontrib><creatorcontrib>Wheeler, Eleanor</creatorcontrib><creatorcontrib>Paige, Ellie</creatorcontrib><creatorcontrib>Surendran, Praveen</creatorcontrib><creatorcontrib>Michelotti, Gregory A.</creatorcontrib><creatorcontrib>Scott, Robert A.</creatorcontrib><creatorcontrib>Burgess, Stephen</creatorcontrib><creatorcontrib>Zuber, Verena</creatorcontrib><creatorcontrib>Sanderson, Eleanor</creatorcontrib><creatorcontrib>Koulman, Albert</creatorcontrib><creatorcontrib>Imamura, Fumiaki</creatorcontrib><creatorcontrib>Forouhi, Nita G.</creatorcontrib><creatorcontrib>Khaw, Kay-Tee</creatorcontrib><creatorcontrib>Griffin, Julian L.</creatorcontrib><creatorcontrib>Wood, Angela M.</creatorcontrib><creatorcontrib>Kastenmüller, Gabi</creatorcontrib><creatorcontrib>Danesh, John</creatorcontrib><creatorcontrib>Butterworth, Adam S.</creatorcontrib><creatorcontrib>Gribble, Fiona M.</creatorcontrib><creatorcontrib>Reimann, Frank</creatorcontrib><creatorcontrib>Bahlo, Melanie</creatorcontrib><creatorcontrib>Fauman, Eric</creatorcontrib><creatorcontrib>Wareham, Nicholas J.</creatorcontrib><creatorcontrib>Langenberg, Claudia</creatorcontrib><creatorcontrib>MacTel Consortium</creatorcontrib><title>A cross-platform approach identifies genetic regulators of human metabolism and health</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>In cross-platform analyses of 174 metabolites, we identify 499 associations (
P
< 4.9 × 10
−10
) characterized by pleiotropy, allelic heterogeneity, large and nonlinear effects and enrichment for nonsynonymous variation. We identify a signal at
GLP2R
(p.Asp470Asn) shared among higher citrulline levels, body mass index, fasting glucose-dependent insulinotropic peptide and type 2 diabetes, with β-arrestin signaling as the underlying mechanism. Genetically higher serine levels are shown to reduce the likelihood (by 95%) and predict development of macular telangiectasia type 2, a rare degenerative retinal disease. Integration of genomic and small molecule data across platforms enables the discovery of regulators of human metabolism and translation into clinical insights.
A large-scale genome-wide meta-analysis conducted across different platforms identifies genetic loci regulating levels of circulating metabolites.</description><subject>45</subject><subject>45/43</subject><subject>631/208/205</subject><subject>692/308/575</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Arrestin</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Body mass index</subject><subject>Body size</subject><subject>Cancer Research</subject><subject>Citrulline</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - genetics</subject><subject>Eye Diseases - genetics</subject><subject>Gene Frequency - genetics</subject><subject>Gene Function</subject><subject>Gene loci</subject><subject>Genetic aspects</subject><subject>Genetic Loci</subject><subject>Genetic Pleiotropy</subject><subject>Genetic regulation</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>Glucagon-Like Peptide-2 Receptor - genetics</subject><subject>Glycine - metabolism</subject><subject>Health</subject><subject>Health aspects</subject><subject>Heterogeneity</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Mendelian Randomization Analysis</subject><subject>Metabolism</subject><subject>Metabolism - genetics</subject><subject>Metabolism, Inborn Errors - genetics</subject><subject>Metabolites</subject><subject>Metabolome - genetics</subject><subject>Mutation, Missense - genetics</subject><subject>Phenotype</subject><subject>Pleiotropy</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Principal components analysis</subject><subject>Regulators</subject><subject>Retinal Telangiectasis - genetics</subject><subject>Sample Size</subject><subject>Serine</subject><subject>Serine - metabolism</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkU1rFTEUhgex2Fr9Ay4k4KqLaU8-J3d5KVoLhUKr3YbM5GRuynxckwzUf2_aWy0XRCSLhOR5Tw7nqaoPFE4pcH2WBJVa18CgBmgkreWr6ohKoWraUP26nEHRWgBXh9XblO4BqBCg31SHnAsqpNBH1d2adHFOqd4ONvs5jsRut3G23YYEh1MOPmAiPU6YQ0ci9kvh5pjI7MlmGe1ERsy2nYeQSnRyZIN2yJt31YG3Q8L3z_tx9f3L52_nX-ur64vL8_VV3SkGuV4JIWmDrBV6JZCBZQCKO1AdspV2sHKNRV369i2TjXItc1y2nHuOXiFX_Lj6tKtbev6xYMrmfl7iVL40TDQN01JzeKF6O6AJk59ztN0YUmfWSgJtlKKyUKd_ocpyOIZuntCHcr8XONkLFCbjQ-7tkpK5vL35f_b6bp9lO_bJTERvtjGMNv40FMyjebMzb4p582TePIY-Pk9iaUd0fyK_VReA74BUnqYe48uo_lH2F6aetSE</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Lotta, Luca A.</creator><creator>Pietzner, Maik</creator><creator>Stewart, Isobel D.</creator><creator>Wittemans, Laura B. L.</creator><creator>Li, Chen</creator><creator>Bonelli, Roberto</creator><creator>Raffler, Johannes</creator><creator>Biggs, Emma K.</creator><creator>Oliver-Williams, Clare</creator><creator>Auyeung, Victoria P. W.</creator><creator>Luan, Jian’an</creator><creator>Wheeler, Eleanor</creator><creator>Paige, Ellie</creator><creator>Surendran, Praveen</creator><creator>Michelotti, Gregory A.</creator><creator>Scott, Robert A.</creator><creator>Burgess, Stephen</creator><creator>Zuber, Verena</creator><creator>Sanderson, Eleanor</creator><creator>Koulman, Albert</creator><creator>Imamura, Fumiaki</creator><creator>Forouhi, Nita G.</creator><creator>Khaw, Kay-Tee</creator><creator>Griffin, Julian L.</creator><creator>Wood, Angela M.</creator><creator>Kastenmüller, Gabi</creator><creator>Danesh, John</creator><creator>Butterworth, Adam S.</creator><creator>Gribble, Fiona M.</creator><creator>Reimann, Frank</creator><creator>Bahlo, Melanie</creator><creator>Fauman, Eric</creator><creator>Wareham, Nicholas J.</creator><creator>Langenberg, Claudia</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-2495-4020</orcidid><orcidid>https://orcid.org/0000-0001-5188-5775</orcidid><orcidid>https://orcid.org/0000-0001-9399-6377</orcidid><orcidid>https://orcid.org/0000-0001-9827-1877</orcidid><orcidid>https://orcid.org/0000-0002-6915-9015</orcidid><orcidid>https://orcid.org/0000-0003-0855-9872</orcidid><orcidid>https://orcid.org/0000-0002-2368-7322</orcidid><orcidid>https://orcid.org/0000-0002-6841-8396</orcidid><orcidid>https://orcid.org/0000-0001-9998-051X</orcidid><orcidid>https://orcid.org/0000-0001-5132-0774</orcidid><orcidid>https://orcid.org/0000-0002-9739-0249</orcidid><orcidid>https://orcid.org/0000-0002-8616-6444</orcidid><orcidid>https://orcid.org/0000-0001-5365-8760</orcidid><orcidid>https://orcid.org/0000-0003-1422-2993</orcidid><orcidid>https://orcid.org/0000-0002-0823-3963</orcidid><orcidid>https://orcid.org/0000-0003-3634-3016</orcidid><orcidid>https://orcid.org/0000-0002-5017-7344</orcidid><orcidid>https://orcid.org/0000-0002-5041-248X</orcidid><orcidid>https://orcid.org/0000-0003-3137-6337</orcidid></search><sort><creationdate>20210101</creationdate><title>A cross-platform approach identifies genetic regulators of human metabolism and health</title><author>Lotta, Luca A. ; Pietzner, Maik ; Stewart, Isobel D. ; Wittemans, Laura B. L. ; Li, Chen ; Bonelli, Roberto ; Raffler, Johannes ; Biggs, Emma K. ; Oliver-Williams, Clare ; Auyeung, Victoria P. W. ; Luan, Jian’an ; Wheeler, Eleanor ; Paige, Ellie ; Surendran, Praveen ; Michelotti, Gregory A. ; Scott, Robert A. ; Burgess, Stephen ; Zuber, Verena ; Sanderson, Eleanor ; Koulman, Albert ; Imamura, Fumiaki ; Forouhi, Nita G. ; Khaw, Kay-Tee ; Griffin, Julian L. ; Wood, Angela M. ; Kastenmüller, Gabi ; Danesh, John ; Butterworth, Adam S. ; Gribble, Fiona M. ; Reimann, Frank ; Bahlo, Melanie ; Fauman, Eric ; Wareham, Nicholas J. ; Langenberg, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-944517e2b4894e20a20063d06ce298d09d7ae8001fb2576db2d35b33f3ef6e363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>45</topic><topic>45/43</topic><topic>631/208/205</topic><topic>692/308/575</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Arrestin</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Body mass index</topic><topic>Body size</topic><topic>Cancer Research</topic><topic>Citrulline</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - genetics</topic><topic>Eye Diseases - genetics</topic><topic>Gene Frequency - genetics</topic><topic>Gene Function</topic><topic>Gene loci</topic><topic>Genetic aspects</topic><topic>Genetic Loci</topic><topic>Genetic Pleiotropy</topic><topic>Genetic regulation</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>Glucagon-Like Peptide-2 Receptor - genetics</topic><topic>Glycine - metabolism</topic><topic>Health</topic><topic>Health aspects</topic><topic>Heterogeneity</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Mendelian Randomization Analysis</topic><topic>Metabolism</topic><topic>Metabolism - genetics</topic><topic>Metabolism, Inborn Errors - genetics</topic><topic>Metabolites</topic><topic>Metabolome - genetics</topic><topic>Mutation, Missense - genetics</topic><topic>Phenotype</topic><topic>Pleiotropy</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Principal components analysis</topic><topic>Regulators</topic><topic>Retinal Telangiectasis - genetics</topic><topic>Sample Size</topic><topic>Serine</topic><topic>Serine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lotta, Luca A.</creatorcontrib><creatorcontrib>Pietzner, Maik</creatorcontrib><creatorcontrib>Stewart, Isobel D.</creatorcontrib><creatorcontrib>Wittemans, Laura B. L.</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Bonelli, Roberto</creatorcontrib><creatorcontrib>Raffler, Johannes</creatorcontrib><creatorcontrib>Biggs, Emma K.</creatorcontrib><creatorcontrib>Oliver-Williams, Clare</creatorcontrib><creatorcontrib>Auyeung, Victoria P. W.</creatorcontrib><creatorcontrib>Luan, Jian’an</creatorcontrib><creatorcontrib>Wheeler, Eleanor</creatorcontrib><creatorcontrib>Paige, Ellie</creatorcontrib><creatorcontrib>Surendran, Praveen</creatorcontrib><creatorcontrib>Michelotti, Gregory A.</creatorcontrib><creatorcontrib>Scott, Robert A.</creatorcontrib><creatorcontrib>Burgess, Stephen</creatorcontrib><creatorcontrib>Zuber, Verena</creatorcontrib><creatorcontrib>Sanderson, Eleanor</creatorcontrib><creatorcontrib>Koulman, Albert</creatorcontrib><creatorcontrib>Imamura, Fumiaki</creatorcontrib><creatorcontrib>Forouhi, Nita G.</creatorcontrib><creatorcontrib>Khaw, Kay-Tee</creatorcontrib><creatorcontrib>Griffin, Julian L.</creatorcontrib><creatorcontrib>Wood, Angela M.</creatorcontrib><creatorcontrib>Kastenmüller, Gabi</creatorcontrib><creatorcontrib>Danesh, John</creatorcontrib><creatorcontrib>Butterworth, Adam S.</creatorcontrib><creatorcontrib>Gribble, Fiona M.</creatorcontrib><creatorcontrib>Reimann, Frank</creatorcontrib><creatorcontrib>Bahlo, Melanie</creatorcontrib><creatorcontrib>Fauman, Eric</creatorcontrib><creatorcontrib>Wareham, Nicholas J.</creatorcontrib><creatorcontrib>Langenberg, Claudia</creatorcontrib><creatorcontrib>MacTel Consortium</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lotta, Luca A.</au><au>Pietzner, Maik</au><au>Stewart, Isobel D.</au><au>Wittemans, Laura B. L.</au><au>Li, Chen</au><au>Bonelli, Roberto</au><au>Raffler, Johannes</au><au>Biggs, Emma K.</au><au>Oliver-Williams, Clare</au><au>Auyeung, Victoria P. W.</au><au>Luan, Jian’an</au><au>Wheeler, Eleanor</au><au>Paige, Ellie</au><au>Surendran, Praveen</au><au>Michelotti, Gregory A.</au><au>Scott, Robert A.</au><au>Burgess, Stephen</au><au>Zuber, Verena</au><au>Sanderson, Eleanor</au><au>Koulman, Albert</au><au>Imamura, Fumiaki</au><au>Forouhi, Nita G.</au><au>Khaw, Kay-Tee</au><au>Griffin, Julian L.</au><au>Wood, Angela M.</au><au>Kastenmüller, Gabi</au><au>Danesh, John</au><au>Butterworth, Adam S.</au><au>Gribble, Fiona M.</au><au>Reimann, Frank</au><au>Bahlo, Melanie</au><au>Fauman, Eric</au><au>Wareham, Nicholas J.</au><au>Langenberg, Claudia</au><aucorp>MacTel Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A cross-platform approach identifies genetic regulators of human metabolism and health</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>53</volume><issue>1</issue><spage>54</spage><epage>64</epage><pages>54-64</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>In cross-platform analyses of 174 metabolites, we identify 499 associations (
P
< 4.9 × 10
−10
) characterized by pleiotropy, allelic heterogeneity, large and nonlinear effects and enrichment for nonsynonymous variation. We identify a signal at
GLP2R
(p.Asp470Asn) shared among higher citrulline levels, body mass index, fasting glucose-dependent insulinotropic peptide and type 2 diabetes, with β-arrestin signaling as the underlying mechanism. Genetically higher serine levels are shown to reduce the likelihood (by 95%) and predict development of macular telangiectasia type 2, a rare degenerative retinal disease. Integration of genomic and small molecule data across platforms enables the discovery of regulators of human metabolism and translation into clinical insights.
A large-scale genome-wide meta-analysis conducted across different platforms identifies genetic loci regulating levels of circulating metabolites.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>33414548</pmid><doi>10.1038/s41588-020-00751-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2495-4020</orcidid><orcidid>https://orcid.org/0000-0001-5188-5775</orcidid><orcidid>https://orcid.org/0000-0001-9399-6377</orcidid><orcidid>https://orcid.org/0000-0001-9827-1877</orcidid><orcidid>https://orcid.org/0000-0002-6915-9015</orcidid><orcidid>https://orcid.org/0000-0003-0855-9872</orcidid><orcidid>https://orcid.org/0000-0002-2368-7322</orcidid><orcidid>https://orcid.org/0000-0002-6841-8396</orcidid><orcidid>https://orcid.org/0000-0001-9998-051X</orcidid><orcidid>https://orcid.org/0000-0001-5132-0774</orcidid><orcidid>https://orcid.org/0000-0002-9739-0249</orcidid><orcidid>https://orcid.org/0000-0002-8616-6444</orcidid><orcidid>https://orcid.org/0000-0001-5365-8760</orcidid><orcidid>https://orcid.org/0000-0003-1422-2993</orcidid><orcidid>https://orcid.org/0000-0002-0823-3963</orcidid><orcidid>https://orcid.org/0000-0003-3634-3016</orcidid><orcidid>https://orcid.org/0000-0002-5017-7344</orcidid><orcidid>https://orcid.org/0000-0002-5041-248X</orcidid><orcidid>https://orcid.org/0000-0003-3137-6337</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4036 |
ispartof | Nature genetics, 2021-01, Vol.53 (1), p.54-64 |
issn | 1061-4036 1546-1718 |
language | eng |
recordid | cdi_proquest_journals_2477285830 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 45 45/43 631/208/205 692/308/575 Agriculture Animal Genetics and Genomics Arrestin Biomedical and Life Sciences Biomedicine Body mass index Body size Cancer Research Citrulline Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 - genetics Eye Diseases - genetics Gene Frequency - genetics Gene Function Gene loci Genetic aspects Genetic Loci Genetic Pleiotropy Genetic regulation Genome, Human Genomes Glucagon-Like Peptide-2 Receptor - genetics Glycine - metabolism Health Health aspects Heterogeneity Human Genetics Humans Linear Models Mendelian Randomization Analysis Metabolism Metabolism - genetics Metabolism, Inborn Errors - genetics Metabolites Metabolome - genetics Mutation, Missense - genetics Phenotype Pleiotropy Polymorphism, Single Nucleotide - genetics Principal components analysis Regulators Retinal Telangiectasis - genetics Sample Size Serine Serine - metabolism |
title | A cross-platform approach identifies genetic regulators of human metabolism and health |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A32%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20cross-platform%20approach%20identifies%20genetic%20regulators%20of%20human%20metabolism%20and%20health&rft.jtitle=Nature%20genetics&rft.au=Lotta,%20Luca%20A.&rft.aucorp=MacTel%20Consortium&rft.date=2021-01-01&rft.volume=53&rft.issue=1&rft.spage=54&rft.epage=64&rft.pages=54-64&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-020-00751-5&rft_dat=%3Cgale_proqu%3EA650176615%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477285830&rft_id=info:pmid/33414548&rft_galeid=A650176615&rfr_iscdi=true |