Energy-conserving time propagation for a structure-preserving particle-in-cell Vlasov–Maxwell solver

•Systematic derivation of energy-conserving propagators for Vlasov-Maxwell simulations.•Propagators based on discrete gradients and antisymmetric Poisson splitting.•Exact discrete energy conservation for semi-implicit method.•Exact discrete energy conservation and Gauss conservation for implicit met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2021-01, Vol.425, p.109890, Article 109890
Hauptverfasser: Kormann, Katharina, Sonnendrücker, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109890
container_title Journal of computational physics
container_volume 425
creator Kormann, Katharina
Sonnendrücker, Eric
description •Systematic derivation of energy-conserving propagators for Vlasov-Maxwell simulations.•Propagators based on discrete gradients and antisymmetric Poisson splitting.•Exact discrete energy conservation for semi-implicit method.•Exact discrete energy conservation and Gauss conservation for implicit method.•Substepping for efficient multiscale simulations. This paper discusses energy-conserving time-discretizations for finite element particle-in-cell discretizations of the Vlasov–Maxwell system. A geometric spatially discrete system can be obtained using a standard particle-in-cell discretization of the particle distribution and compatible finite element spaces for the fields to discretize the Poisson bracket of the Vlasov–Maxwell model (see Kraus et al. (2017) [1]). In this paper, we derive energy-conserving time-discretizations based on the discrete gradient method applied to an antisymmetric splitting of the Poisson matrix. Firstly, we propose a semi-implicit method based on a splitting that yields constant Poisson matrices in each substep. Moreover, we devise an alternative discrete gradient that yields a time discretization that can additionally conserve Gauss' law. Finally, we explain how substepping for fast species dynamics can be incorporated.
doi_str_mv 10.1016/j.jcp.2020.109890
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2477270688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999120306641</els_id><sourcerecordid>2477270688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-e3ff0ea0c18780007f325909ced9a0aa8e26b29e6bc58b3a8c6678115b406a483</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAewisXYZOy9brFDFSypiA2wtx51UjtI42GmhO_6BP-RLcFTYspqH7p05uoScM5gxYMVlM2tMP-PAx1kKCQdkEhugvGTFIZkAcEallOyYnITQAIDIMzEh9U2HfrWjxnUB_dZ2q2Swa0x673q90oN1XVI7n-gkDH5jho1H2nv80_baD9a0SG1HDbZt8trq4Lbfn1-P-uN9XATXbtGfkqNatwHPfuuUvNzePM_v6eLp7mF-vaAm5flAMa1rQA2GiVJExrKOawnS4FJq0FogLyousahMLqpUC1MUpWAsrzIodCbSKbnY3438bxsMg2rcxnfxpeJZWfISCjGq2F5lvAvBY616b9fa7xQDNcapGhXjVGOcah9n9FztPRjxtxa9CsZiF8msRzOopbP_uH8AyuV_xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477270688</pqid></control><display><type>article</type><title>Energy-conserving time propagation for a structure-preserving particle-in-cell Vlasov–Maxwell solver</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kormann, Katharina ; Sonnendrücker, Eric</creator><creatorcontrib>Kormann, Katharina ; Sonnendrücker, Eric</creatorcontrib><description>•Systematic derivation of energy-conserving propagators for Vlasov-Maxwell simulations.•Propagators based on discrete gradients and antisymmetric Poisson splitting.•Exact discrete energy conservation for semi-implicit method.•Exact discrete energy conservation and Gauss conservation for implicit method.•Substepping for efficient multiscale simulations. This paper discusses energy-conserving time-discretizations for finite element particle-in-cell discretizations of the Vlasov–Maxwell system. A geometric spatially discrete system can be obtained using a standard particle-in-cell discretization of the particle distribution and compatible finite element spaces for the fields to discretize the Poisson bracket of the Vlasov–Maxwell model (see Kraus et al. (2017) [1]). In this paper, we derive energy-conserving time-discretizations based on the discrete gradient method applied to an antisymmetric splitting of the Poisson matrix. Firstly, we propose a semi-implicit method based on a splitting that yields constant Poisson matrices in each substep. Moreover, we devise an alternative discrete gradient that yields a time discretization that can additionally conserve Gauss' law. Finally, we explain how substepping for fast species dynamics can be incorporated.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2020.109890</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Computational physics ; Discrete gradient ; Discrete systems ; Discretization ; Geometric numerical methods ; Implicit methods ; Particle in cell technique ; Particle-in-cell ; Splitting ; Vlasov–Maxwell</subject><ispartof>Journal of computational physics, 2021-01, Vol.425, p.109890, Article 109890</ispartof><rights>2020 The Author(s)</rights><rights>Copyright Elsevier Science Ltd. Jan 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-e3ff0ea0c18780007f325909ced9a0aa8e26b29e6bc58b3a8c6678115b406a483</citedby><cites>FETCH-LOGICAL-c325t-e3ff0ea0c18780007f325909ced9a0aa8e26b29e6bc58b3a8c6678115b406a483</cites><orcidid>0000-0002-8340-7230 ; 0000-0003-1956-2073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2020.109890$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kormann, Katharina</creatorcontrib><creatorcontrib>Sonnendrücker, Eric</creatorcontrib><title>Energy-conserving time propagation for a structure-preserving particle-in-cell Vlasov–Maxwell solver</title><title>Journal of computational physics</title><description>•Systematic derivation of energy-conserving propagators for Vlasov-Maxwell simulations.•Propagators based on discrete gradients and antisymmetric Poisson splitting.•Exact discrete energy conservation for semi-implicit method.•Exact discrete energy conservation and Gauss conservation for implicit method.•Substepping for efficient multiscale simulations. This paper discusses energy-conserving time-discretizations for finite element particle-in-cell discretizations of the Vlasov–Maxwell system. A geometric spatially discrete system can be obtained using a standard particle-in-cell discretization of the particle distribution and compatible finite element spaces for the fields to discretize the Poisson bracket of the Vlasov–Maxwell model (see Kraus et al. (2017) [1]). In this paper, we derive energy-conserving time-discretizations based on the discrete gradient method applied to an antisymmetric splitting of the Poisson matrix. Firstly, we propose a semi-implicit method based on a splitting that yields constant Poisson matrices in each substep. Moreover, we devise an alternative discrete gradient that yields a time discretization that can additionally conserve Gauss' law. Finally, we explain how substepping for fast species dynamics can be incorporated.</description><subject>Computational physics</subject><subject>Discrete gradient</subject><subject>Discrete systems</subject><subject>Discretization</subject><subject>Geometric numerical methods</subject><subject>Implicit methods</subject><subject>Particle in cell technique</subject><subject>Particle-in-cell</subject><subject>Splitting</subject><subject>Vlasov–Maxwell</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAewisXYZOy9brFDFSypiA2wtx51UjtI42GmhO_6BP-RLcFTYspqH7p05uoScM5gxYMVlM2tMP-PAx1kKCQdkEhugvGTFIZkAcEallOyYnITQAIDIMzEh9U2HfrWjxnUB_dZ2q2Swa0x673q90oN1XVI7n-gkDH5jho1H2nv80_baD9a0SG1HDbZt8trq4Lbfn1-P-uN9XATXbtGfkqNatwHPfuuUvNzePM_v6eLp7mF-vaAm5flAMa1rQA2GiVJExrKOawnS4FJq0FogLyousahMLqpUC1MUpWAsrzIodCbSKbnY3438bxsMg2rcxnfxpeJZWfISCjGq2F5lvAvBY616b9fa7xQDNcapGhXjVGOcah9n9FztPRjxtxa9CsZiF8msRzOopbP_uH8AyuV_xg</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Kormann, Katharina</creator><creator>Sonnendrücker, Eric</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8340-7230</orcidid><orcidid>https://orcid.org/0000-0003-1956-2073</orcidid></search><sort><creationdate>20210115</creationdate><title>Energy-conserving time propagation for a structure-preserving particle-in-cell Vlasov–Maxwell solver</title><author>Kormann, Katharina ; Sonnendrücker, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-e3ff0ea0c18780007f325909ced9a0aa8e26b29e6bc58b3a8c6678115b406a483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational physics</topic><topic>Discrete gradient</topic><topic>Discrete systems</topic><topic>Discretization</topic><topic>Geometric numerical methods</topic><topic>Implicit methods</topic><topic>Particle in cell technique</topic><topic>Particle-in-cell</topic><topic>Splitting</topic><topic>Vlasov–Maxwell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kormann, Katharina</creatorcontrib><creatorcontrib>Sonnendrücker, Eric</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kormann, Katharina</au><au>Sonnendrücker, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-conserving time propagation for a structure-preserving particle-in-cell Vlasov–Maxwell solver</atitle><jtitle>Journal of computational physics</jtitle><date>2021-01-15</date><risdate>2021</risdate><volume>425</volume><spage>109890</spage><pages>109890-</pages><artnum>109890</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>•Systematic derivation of energy-conserving propagators for Vlasov-Maxwell simulations.•Propagators based on discrete gradients and antisymmetric Poisson splitting.•Exact discrete energy conservation for semi-implicit method.•Exact discrete energy conservation and Gauss conservation for implicit method.•Substepping for efficient multiscale simulations. This paper discusses energy-conserving time-discretizations for finite element particle-in-cell discretizations of the Vlasov–Maxwell system. A geometric spatially discrete system can be obtained using a standard particle-in-cell discretization of the particle distribution and compatible finite element spaces for the fields to discretize the Poisson bracket of the Vlasov–Maxwell model (see Kraus et al. (2017) [1]). In this paper, we derive energy-conserving time-discretizations based on the discrete gradient method applied to an antisymmetric splitting of the Poisson matrix. Firstly, we propose a semi-implicit method based on a splitting that yields constant Poisson matrices in each substep. Moreover, we devise an alternative discrete gradient that yields a time discretization that can additionally conserve Gauss' law. Finally, we explain how substepping for fast species dynamics can be incorporated.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2020.109890</doi><orcidid>https://orcid.org/0000-0002-8340-7230</orcidid><orcidid>https://orcid.org/0000-0003-1956-2073</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2021-01, Vol.425, p.109890, Article 109890
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_journals_2477270688
source Access via ScienceDirect (Elsevier)
subjects Computational physics
Discrete gradient
Discrete systems
Discretization
Geometric numerical methods
Implicit methods
Particle in cell technique
Particle-in-cell
Splitting
Vlasov–Maxwell
title Energy-conserving time propagation for a structure-preserving particle-in-cell Vlasov–Maxwell solver
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-conserving%20time%20propagation%20for%20a%20structure-preserving%20particle-in-cell%20Vlasov%E2%80%93Maxwell%20solver&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Kormann,%20Katharina&rft.date=2021-01-15&rft.volume=425&rft.spage=109890&rft.pages=109890-&rft.artnum=109890&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2020.109890&rft_dat=%3Cproquest_cross%3E2477270688%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477270688&rft_id=info:pmid/&rft_els_id=S0021999120306641&rfr_iscdi=true