Energy-conserving time propagation for a structure-preserving particle-in-cell Vlasov–Maxwell solver
•Systematic derivation of energy-conserving propagators for Vlasov-Maxwell simulations.•Propagators based on discrete gradients and antisymmetric Poisson splitting.•Exact discrete energy conservation for semi-implicit method.•Exact discrete energy conservation and Gauss conservation for implicit met...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2021-01, Vol.425, p.109890, Article 109890 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Systematic derivation of energy-conserving propagators for Vlasov-Maxwell simulations.•Propagators based on discrete gradients and antisymmetric Poisson splitting.•Exact discrete energy conservation for semi-implicit method.•Exact discrete energy conservation and Gauss conservation for implicit method.•Substepping for efficient multiscale simulations.
This paper discusses energy-conserving time-discretizations for finite element particle-in-cell discretizations of the Vlasov–Maxwell system. A geometric spatially discrete system can be obtained using a standard particle-in-cell discretization of the particle distribution and compatible finite element spaces for the fields to discretize the Poisson bracket of the Vlasov–Maxwell model (see Kraus et al. (2017) [1]). In this paper, we derive energy-conserving time-discretizations based on the discrete gradient method applied to an antisymmetric splitting of the Poisson matrix. Firstly, we propose a semi-implicit method based on a splitting that yields constant Poisson matrices in each substep. Moreover, we devise an alternative discrete gradient that yields a time discretization that can additionally conserve Gauss' law. Finally, we explain how substepping for fast species dynamics can be incorporated. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2020.109890 |