Energy-conserving time propagation for a structure-preserving particle-in-cell Vlasov–Maxwell solver

•Systematic derivation of energy-conserving propagators for Vlasov-Maxwell simulations.•Propagators based on discrete gradients and antisymmetric Poisson splitting.•Exact discrete energy conservation for semi-implicit method.•Exact discrete energy conservation and Gauss conservation for implicit met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2021-01, Vol.425, p.109890, Article 109890
Hauptverfasser: Kormann, Katharina, Sonnendrücker, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Systematic derivation of energy-conserving propagators for Vlasov-Maxwell simulations.•Propagators based on discrete gradients and antisymmetric Poisson splitting.•Exact discrete energy conservation for semi-implicit method.•Exact discrete energy conservation and Gauss conservation for implicit method.•Substepping for efficient multiscale simulations. This paper discusses energy-conserving time-discretizations for finite element particle-in-cell discretizations of the Vlasov–Maxwell system. A geometric spatially discrete system can be obtained using a standard particle-in-cell discretization of the particle distribution and compatible finite element spaces for the fields to discretize the Poisson bracket of the Vlasov–Maxwell model (see Kraus et al. (2017) [1]). In this paper, we derive energy-conserving time-discretizations based on the discrete gradient method applied to an antisymmetric splitting of the Poisson matrix. Firstly, we propose a semi-implicit method based on a splitting that yields constant Poisson matrices in each substep. Moreover, we devise an alternative discrete gradient that yields a time discretization that can additionally conserve Gauss' law. Finally, we explain how substepping for fast species dynamics can be incorporated.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2020.109890