Graph-of-Tweets: A Graph Merging Approach to Sub-event Identification
Graph structures are powerful tools for modeling the relationships between textual elements. Graph-of-Words (GoW) has been adopted in many Natural Language tasks to encode the association between terms. However, GoW provides few document-level relationships in cases when the connections between docu...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Graph structures are powerful tools for modeling the relationships between textual elements. Graph-of-Words (GoW) has been adopted in many Natural Language tasks to encode the association between terms. However, GoW provides few document-level relationships in cases when the connections between documents are also essential. For identifying sub-events on social media like Twitter, features from both word- and document-level can be useful as they supply different information of the event. We propose a hybrid Graph-of-Tweets (GoT) model which combines the word- and document-level structures for modeling Tweets. To compress large amount of raw data, we propose a graph merging method which utilizes FastText word embeddings to reduce the GoW. Furthermore, we present a novel method to construct GoT with the reduced GoW and a Mutual Information (MI) measure. Finally, we identify maximal cliques to extract popular sub-events. Our model showed promising results on condensing lexical-level information and capturing keywords of sub-events. |
---|---|
ISSN: | 2331-8422 |