Temperature‐Dependent Photochromic Performance of Yttrium Oxyhydride Thin Films
Yttrium oxyhydride (YHO) is a rare‐earth‐metal oxyhydride that has attracted considerable attention due to its outstanding photochromic properties. The transparency of YHO thin films across the infrared and visible spectral regions is reduced considerably under UV illumination (photodarkening) and r...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. PSS-RRL. Rapid research letters 2021-01, Vol.15 (1), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Yttrium oxyhydride (YHO) is a rare‐earth‐metal oxyhydride that has attracted considerable attention due to its outstanding photochromic properties. The transparency of YHO thin films across the infrared and visible spectral regions is reduced considerably under UV illumination (photodarkening) and recovers when the illumination is removed (bleaching). Although oxygen diffusion has been shown to be necessary for these processes, the exact mechanism for the photochromic behavior is not yet understood. In this work, infrared spectroscopy is utilized to investigate the effect of temperature on the photochromic properties of YHO thin films. The measurements show that YHO can photodarken at temperatures as low as 5 K, where anion diffusion is expected to be severely limited. The bleaching of the films is small, but not zero, for temperatures between 5 and 50 K. A stepwise recovery of the transmittance is observed as the temperature of the films is increased above 100 K up to 250 K. The temperature‐dependent data show that anion diffusion is not required to explain the photochromic behavior of YHO, and that an additional mechanism (or mechanisms), e.g., electronic charge transfer, contributes to the photochromic behavior of YHO, as well as other rare‐earth‐metal oxyhydrides.
Yttrium oxyhydride (YHO) thin films exhibit outstanding photochromic behavior upon exposure to and removal of UV illumination. Low‐temperature IR spectroscopy is used to show that temperature (between 5 and 295 K) has a dramatic effect on the photo‐chromic performance of YHO thin films, with implications for the fundamental mechanism(s) responsible for the photochromic behavior. |
---|---|
ISSN: | 1862-6254 1862-6270 |
DOI: | 10.1002/pssr.202000459 |