Proving a conjecture on chromatic polynomials by counting the number of acyclic orientations
The chromatic polynomial P(G,x) of a graph G of order n can be expressed as ∑i=1n(−1)n−iaixi, where ai is interpreted as the number of broken‐cycle‐free spanning subgraphs of G with exactly i components. The parameter ϵ(G)=∑i=1n(n−i)ai∕∑i=1nai is the mean size of a broken‐cycle‐free spanning subgrap...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2021-03, Vol.96 (3), p.343-360 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The chromatic polynomial P(G,x) of a graph G of order n can be expressed as ∑i=1n(−1)n−iaixi, where ai is interpreted as the number of broken‐cycle‐free spanning subgraphs of G with exactly i components. The parameter ϵ(G)=∑i=1n(n−i)ai∕∑i=1nai is the mean size of a broken‐cycle‐free spanning subgraph of G. In this article, we confirm and strengthen a conjecture proposed by Lundow and Markström in 2006 that ϵ(Tn) |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.22617 |