Mild sulfonated polyether ketone ether ketone ketone incorporated polysulfone membranes for microbial fuel cell application
To address the impediments of low power generation of Nafion, which is the main hurdle in the commercialization of microbial fuel cells (MFC), the current study focuses on developing a new PEM for MFC from mild sulfonation of PEKEKK with relatively improved physiochemical properties. In this study,...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2021-04, Vol.138 (15), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To address the impediments of low power generation of Nafion, which is the main hurdle in the commercialization of microbial fuel cells (MFC), the current study focuses on developing a new PEM for MFC from mild sulfonation of PEKEKK with relatively improved physiochemical properties. In this study, mild post sulfonation of a polyether ketone ether ketone ketone (PEKEKK) has been successfully achieved using 98% H2SO4 at 90°C under reflux. 5%–30% (wt%) of sulfonated PEKEKK (SPEKEKK) loaded polysulfone (PSU) composite membranes were fabricated via a solution casting method. Ingeminating evidence of the sulfonation and structure of sulfonated polymer was proved by 1H NMR peaks integration data and FTIR, respectively. The addition of SPEKEKK to PSU showed significant improvement in conductivity owing to the availability of more protonated sites (SO3H) and water mediated pathways for the conduction of protons. The composite membrane containing 30 wt% SPEKEKK exhibits the highest conductivity of 0.12 S/cm at 90°C. The water uptakes and swelling ratio of the composite membranes are all higher than that of the pristine PSU membrane and show an increasing trend with increasing SPEKEKK content, thus validating the availability of water domains. Meanwhile, the lowest initial decomposition temperatures assigned to sulfonic acid groups and main chain degradation of the polysulfone/polyether ketone ether ketone ketone (PSU/SPEKEKK) composite membranes occurred at ~300°C and ~500°C respectively, which reflects an excellent thermal stability property. The experimental results indicate that the PSU/SPEKEKK membrane has the potential to greatly enhance the efficiency of MFCs.
PEKEKK polymer was sulfonated successfully under mild conditions.
Composite membranes were obtained by incorporating sulfonated polymer.
The composite membranes showed reasonable water uptake, high proton conductivity and excellent thermal stability. |
---|---|
ISSN: | 0021-8995 1097-4628 |
DOI: | 10.1002/app.50216 |