Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries
Inactive components and safety hazards are two critical challenges in realizing high-energy lithium-ion batteries. Metal foil current collectors with high density are typically an integrated part of lithium-ion batteries yet deliver no capacity. Meanwhile, high-energy batteries can entail increased...
Gespeichert in:
Veröffentlicht in: | Nature energy 2020-10, Vol.5 (10), p.786-793 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inactive components and safety hazards are two critical challenges in realizing high-energy lithium-ion batteries. Metal foil current collectors with high density are typically an integrated part of lithium-ion batteries yet deliver no capacity. Meanwhile, high-energy batteries can entail increased fire safety issues. Here we report a composite current collector design that simultaneously minimizes the ‘dead weight’ within the cell and improves fire safety. An ultralight polyimide-based current collector (9 μm thick, specific mass 1.54 mg cm
−2
) is prepared by sandwiching a polyimide embedded with triphenyl phosphate flame retardant between two superthin Cu layers (~500 nm). Compared to lithium-ion batteries assembled with the thinnest commercial metal foil current collectors (~6 µm), batteries equipped with our composite current collectors can realize a 16–26% improvement in specific energy and rapidly self-extinguish fires under extreme conditions such as short circuits and thermal runaway.
Batteries need to be energy-dense as well as safe. Yi Cui and team develop an ultralight polyimide-based current collector with embedded fire retardants that enables lithium-ion batteries with much-enhanced safety and energy density. |
---|---|
ISSN: | 2058-7546 2058-7546 |
DOI: | 10.1038/s41560-020-00702-8 |