Targeting the estrogen receptor alpha (ERα)-mediated circ-SMG1.72/miR-141-3p/Gelsolin signaling to better suppress the HCC cell invasion

Early studies indicated that estrogen receptor α (ERα) might impact the progression of hepatocellular carcinoma (HCC). However, the detailed mechanisms, especially its linkage to the gelsolin (GSN)-mediated cell invasion, remain unclear. Here we found that ERα could decrease HCC cell invasion via su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2020-03, Vol.39 (12), p.2493-2508
Hauptverfasser: Xiao, Yao, Liu, Guodong, Sun, Yin, Gao, Yuan, Ouyang, Xiwu, Chang, Chawnshang, Gong, Liansheng, Yeh, Shuyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Early studies indicated that estrogen receptor α (ERα) might impact the progression of hepatocellular carcinoma (HCC). However, the detailed mechanisms, especially its linkage to the gelsolin (GSN)-mediated cell invasion, remain unclear. Here we found that ERα could decrease HCC cell invasion via suppressing the circular RNA-SMG1.72 (circRNA-SMG1.72) expression via transcriptional regulation through directly binding to the 5′ promoter region of its host gene SMG1, We showed that ERα-suppressed circ-SMG1.72 could sponge and inhibit the expression of the microRNA (miRNA, miR), miR-141-3p, which could then result in increasing the GSN messenger RNA translation via reduced miR binding to its 3′ untranslated region (3′UTR). The preclinical study using an in vivo mouse model with orthotopic xenografts of HCC cells confirmed the in vitro data, and the human HCC clinical sample survey and tissue staining also confirmed the linkage of ERα/miR-141-3p/GSN signaling to the HCC progression. Together, our findings suggest that ERα can suppress HCC cell invasion via altering the ERα/circRNA-SMG1.72/miR-141-3p/GSN signaling, and targeting this newly identified signaling with small molecules may help in the development of novel therapies to better suppress the HCC progression.
ISSN:0950-9232
1476-5594
DOI:10.1038/s41388-019-1150-6