Unidirectional current-driven toron motion in a cylindrical nanowire

A magnetic toron is a spatially localized three-dimensional spin texture composed of skyrmionic layers with two Bloch points at its two ends. The magnetic toron can, thus, be stabilized in chiral magnets using external fields. In this work, we studied the toron dynamics induced by electric currents...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-01, Vol.118 (2)
Hauptverfasser: Hu, Qiyang, Lyu, Boyao, Tang, Jin, Kong, Lingyao, Du, Haifeng, Wang, Weiwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A magnetic toron is a spatially localized three-dimensional spin texture composed of skyrmionic layers with two Bloch points at its two ends. The magnetic toron can, thus, be stabilized in chiral magnets using external fields. In this work, we studied the toron dynamics induced by electric currents in a cylindrical nanowire using micromagnetic simulations. We show that the toron performs a unidirectional motion in a nanowire where the current is applied along the wire direction. The current-induced toron motion can be divided into three regions: static region for a small current due to the pinning effect, toron moving region for a large current, and toron annihilation region for a large reversal current. Moreover, the moving direction can be tuned by the sign of Dzyaloshinskii–Moriya interaction. Such peculiar dynamics indicates that the magnetic toron is a possible candidate as an information carrier.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0033239