An algebraic expression of the number partitioning problem

In this paper we investigate the number partitioning problem, using the tropical semiring (max-plus algebra). We show that the problem is reduced to deciding whether one of integers is a solution of a tropical analogue of algebraic equations with coefficients composed of other integers. For n up to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2020-10, Vol.285, p.283-296
Hauptverfasser: Kubo, Susumu, Nishinari, Katsuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we investigate the number partitioning problem, using the tropical semiring (max-plus algebra). We show that the problem is reduced to deciding whether one of integers is a solution of a tropical analogue of algebraic equations with coefficients composed of other integers. For n up to 6 we derive concretely and explicitly the equation and its solution set. The derivation requires only routine algebraic computations, so can be applied for n larger than 6. Our approach based on max-plus algebra reveals the mathematical structure of the problem and provides a new view point for the P versus NP problem, since the problem is well-known to be NP-complete.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2020.04.020