Tuning Electronic Structure and Magnetic Properties of Flat Stanene by Hydrogenation and Al/P Doping: A First Principle DFT Study

A Stanene, is a two-dimensional material composed of tin atoms arranged in a single hexagonal layer, in a manner similar to graphene. First principle studies based on density functional theory were performed to investigate the effects of hydrogenation and Al/P doping on electronic structure and magn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2021-01, Vol.11 (1), p.47
Hauptverfasser: Pamungkas, Mauludi Ariesto, Sari, Vinsa Kharisma Rofiqo, Irwansyah, Putra, Setiawan Ade, Abdurrouf, Nurhuda, Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Stanene, is a two-dimensional material composed of tin atoms arranged in a single hexagonal layer, in a manner similar to graphene. First principle studies based on density functional theory were performed to investigate the effects of hydrogenation and Al/P doping on electronic structure and magnetic properties of stanene. Hydrogenation opens the bandgap of stanene and changes it from nonmagnetic to the ferromagnetic material through H 1s states and Sn 5p states hybridization. Al/P atom at hollow site prevent electrons of adjacent Sn atoms to connect so that inducing unpaired electrons. The combination of hydrogenation and Al/P doping increases its magnetization. The sequence based on its magnetic moment from small to large is as follows: pure stanene, Al-doped stanene, P-doped stanene, hydrogenated stanene, Al-doped hydrogenated stanene, and P-doped hydrogenated stanene. The controllable transformation from nonmagnetic metallic to a magnetic semiconductor is a key requirement for materials to be used as spintronic materials. Thus, these results may shed light on designing the stanene-based electronic and spintronics materials.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings11010047