Progressive path tracing with bilateral-filtering-based denoising

Path tracing can generate realistic images based on virtual 3D scene models, but the images are prone to be noisy. To solve this problem, we developed a novel denoising algorithm framework. Firstly, according to the relative mean square error of the noisy pixels, we introduced a progressive adaptive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2021, Vol.80 (1), p.1529-1544
Hauptverfasser: Xing, Qiwei, Chen, Chunyi, Li, Zhihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Path tracing can generate realistic images based on virtual 3D scene models, but the images are prone to be noisy. To solve this problem, we developed a novel denoising algorithm framework. Firstly, according to the relative mean square error of the noisy pixels, we introduced a progressive adaptive sampling strategy to optimize the distribution of samples. Next, to enhance the quality of the final reconstructed images, we designed an improved bilateral filtering algorithm with use of the gradient feature to obtain the noise-free images. Experimental results demonstrate that our framework outperforms the state-of-the-art path tracing denoising methods in terms of the visual quality, numerical error , and time cost.
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-020-09650-7