Unit Ball Graphs on Geodesic Spaces
Consider finitely many points in a geodesic space. If the distance of two points is less than a fixed threshold, then we regard these two points as “near”. Connecting near points with edges, we obtain a simple graph on the points, which is called a unit ball graph. If the space is the real line, the...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2021, Vol.37 (1), p.111-125 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consider finitely many points in a geodesic space. If the distance of two points is less than a fixed threshold, then we regard these two points as “near”. Connecting near points with edges, we obtain a simple graph on the points, which is called a unit ball graph. If the space is the real line, then it is known as a unit interval graph. Unit ball graphs on a geodesic space describe geometric characteristics of the space in terms of graphs. In this article, we show that every unit ball graph on a geodesic space is (strongly) chordal if and only if the space is an
R
-tree and that every unit ball graph on a geodesic space is (claw, net)-free if and only if the space is a connected manifold of dimension at most 1. As a corollary, we prove that the collection of unit ball graphs essentially characterizes the real line and the unit circle. |
---|---|
ISSN: | 0911-0119 1435-5914 |
DOI: | 10.1007/s00373-020-02231-3 |